## Rectangular Coordinate System

- In pre-algebra, we used number lines to plot numbers and equations and inequalities of 1 variable ( $x=-3, x<4 \Rightarrow>$ one-dimensional)

- To examine equations involving 2 variables, we graph on a rectangular (Cartesian) coordinate system ( $y=x, y=x-1=>$ two-dimensional)
- On a plane, each point is a pair of numbers $\Rightarrow(1,2) ;(-2,-3) ;(3,-1)$



## Quadrants and Finding Coordinates

- Coordinates like $(2,3)$ are called ordered pairs and are of the form ( $x, y$ ), where $x$ is the $x$-coordinate, and $y$ is the $y$-coordinate
- Graphs can be divided into 4 quadrants
- Quadrant I => both coordinates are positive
- Quadrant II => 1st-coordinate negative / 2nd-coordinate positive
- Quadrant III => both coordinates are negative
- Quadrant IV $\Rightarrow>$ 1st-coordinate positive / 2nd-coordinate negative



## Solutions of Equations

- To determine if an ordered pair is a solution of an equation, we use the $1^{\text {st }}$ number in the pair to replace the variable that occurs $1^{\text {st }}$ alphabetically
- The solution of an equation in 2 variables (typically $x$ and $y$ ) is an ordered pair which when substituted into the equation give a true statement
- Because of this, we can generate ordered-pair solutions to equations to graph
- Substituting $x=2$ into $y=3-x^{2}$ gives an ordered pair solution of (2, )
- Show that $(-2,-1)$ is a solution to $y=3-x^{2}$
- Graph $y=3-x^{2}$ by using numbers from -2 to 2 for $x$ and finding the coordinates

| $x$ | $y$ |
| :---: | :---: |
| -2 | -1 |
| -1 |  |
| 0 |  |
| 0.5 |  |
| 1 |  |
| 2 |  |



- Graph $y=|x|$ and
$y=2 x-1$ on the board with time


## Identifying Intercepts

- A y-intercept of a graph is a point where the graph intersects the $y$-axis (this is also the point where $x=0$ )
- An x-intercept of a graph is a point where the graph intersects the $x$-axis (this is also the point where $y=0$ )
- Two graphs intersect each other at any point where their $x$-coordinates and $y$ coordinates are the same
- Find the $x$ and $y$ intercepts for the following



## Interpreting Graphs

- Line graphs are often used to show trends over time or a range
- By identifying points on line graphs and their coordinates, you can interpret specific information given in the graph
- How many rushing yards did the Hokies have in 2008? In 2012?
- How many passing yards did the Hokies have in 2012?
- For the period given, what is the biggest total of rushing yards in a season for the Hokies and in what season?
- Around how many more passing yards did VT have than rushing yards in 2013?
- How many more yards passing did the Hokies
 have in 2010 than the previous season ( $\Delta \mathrm{y}$ )?

