Section 1.2 (Basics of Functions and Their Graphs)

Within ordered pairs (any set of ordered pairs is also called a relation), the first components are called the domain (usually the x-coordinate) and the second components are called the range (the y-coordinate) of the relation.

Here, the correspondence between the character and their popularity is \{(Ernie,4), (Bert,4), (Oscar,8), (Cookie,26), (Bird,24), (Elmo,19), (Count,7), (Grover,4), (Snuffy,4)\}

The domain ($1^{\text {st }}$ values) is

The range ($2^{\text {nd }}$ values) is

A function is a relation in which each element in the domain corresponds to exactly 1 element of the range

Example: Determine if the following are functions

Domain
Ernie
Bert
Oscar
Cookie
Bird
Elmo
Count
Grover
Snuffy

$\{(1,2),(3,4),(3,5),(4,6)\}$
$\{(1,5),(2,5),(3,5)\}$
Domain:

Range:

Functions are usually given in terms of equations rather than as sets of ordered pairs. For y to be a function of x, each value for x should correspond to only 1 value for y.

Example: Determine whether each equation defines y as a function of $\mathrm{x}(\mathrm{x}$ is the independent variable and can be assigned any value in the domain; y is the dependent variable because its value depends on x)

$$
y=3-x^{2} \quad y=\sqrt{x+20} \quad x^{2}+y^{2}=16
$$

Functions are often listed as " f of x ", " g of x ", etc. and written as $f(x), g(x), h(x)$, etc. and represent the value of the given function evaluated at the number x.

Example: Consider the function $y=$ " f of $x "=f(x)=2 x^{2}-x$. Evaluate $f(2), f(x+1)$ and $f(-x)$.

$$
f(2)=2(2)^{2}-2=6, \quad f(x+1)=\quad f(-x)=
$$

The graph of a function is a graph of the ordered pairs that solve the function.
Example: Graph $f(x)=2 x+1, g(x)=2 x$ and describe how they are related

Example: Graph $g(x)=|x|$ and $h(x)=|x|-3$ using $x=-3,-1,0$, and 2 then describe how they are related

The vertical line test can be used to determine if a graph denotes y as a function of x. If any vertical line intersects the graph in more than 1 point, the graph does not define y as a function of x.

Example: Determine if the following graphs have y as a function of x

Example: Find $h(-2)$ in the above example and find the value of x for which $h(x)=-3$

Example: Online HW Examples (domain, range, etc.)

