Basic Graphs

Knowing the graphical representation of basic functions allows us to make alterations or

 transformations into similar (but more complicated) functions- Let's examine the graphs of some common and basic functions

x	$f(x)=x$	$f(x)=x^{2}$	$f(x)=-3$
-2	-2	4	-3
-1	-1	1	-3
0			
0.5			
1			
2			

$$
f(x)=x, f(x)=x^{2}, f(x)=-3
$$

Basic Graphs

Knowing the graphical representation of basic functions allows us to make alterations or transformations into similar (but more complicated) functions

Transformations

- Now let's review some basic transformations and their effects
- Basically, the question becomes what is being affected by the addition / multiplication of a constant
- The x variable (just the independent variable) => horizontal effect
- The y variable (or $f(x)$ as a whole) $=>$ vertical effect

Vertical Shifts

-Vertical shifts (the " y " or entire function is changed by some constant)

- The graph of $y=f(x)+c$ is the graph of $y=f(x)$ shifted up vertically by c units
- The graph of $y=f(x)-c$ is the graph of $y=f(x)$ shifted down vertically by c units

Horizontal Shifts

-Horizontal shifts (the " x " or independent variable is changed by some constant)
oThe graph of $y=f(x+c)$ is the graph of $y=f(x)$ shifted to the left (opposite the sign) by c units
oThe graph of $y=f(x-c)$ is the graph of $y=f(x)$ shifted to the right (opposite the sign) by c units

Example Graphs

Reflections

- Reflections (graph is the same but reflected about the x / y axis)
- The graph of $y=-f(x)$ is the graph of $y=f(x)$ reflected about the x-axis (y values are changing)
- The graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected about the y-axis (we're changing the independent variable x)

Stretching / Shrinking

- Stretching / shrinking (graph is the stretched or shrunk vertically / horizontally)
- The graph of $y=\operatorname{cf}(x)$ is the graph of $y=f(x)$ vertically stretched (multiplies y coordinates by c)
- Think of grabbing the top and bottom of the graph and stretching it
- The graph of $y=f(c x)$ is the graph of $y=f(x)$ horizontally stretched (mult. x-coordinates by c)

Example Graphs

Reflections

Stretching / Shrinking

Multiple Transformations

```
Book problems: 53,55,59,63,67,69,77,81,83,87,95,100,103,107,109,115
```

- These basic transformations can be applied to functions (graphs) individually or in combination with one another
- Look at a couple of HW exercises as an example

