Section 1.7 (Combinations of Functions and Composite Functions)

- Before exploring combinations of functions, let's review the domain of a function
- The domain of a function $f(x)$ is the set of real numbers for which the value of $f(x)$ is defined
- In particular, we need to exclude numbers that cause division by zero in a rational function and numbers that result in the root (even root) of a negative number
- Because x/0 and sqrt(-1) are undefined (not real numbers)

Examples: Find the domain of each function (what values of x make this function work)

$$
f(x)=x^{2}+3 x-17 \quad g(x)=\frac{5 x}{x^{2}-49} \quad h(x)=\sqrt{9 x-27}
$$

- Given 2 functions, the sum, difference, product, and quotient of those functions are also functions
- The domain for these combined functions consist of all real numbers that are common to the domains of the 2 individual functions (except for sometimes the quotient)
Example: Research has shown that the equation $A(x)=2 x-15$ represents the number of games Alabama typically wins in a season and $B(x)=x-2$ represents the number of games Auburn wins (x represents the number of games played). How many games combined will Alabama and Auburn win if they play 10 games?
$\mathrm{A}(10)=\quad \mathrm{B}(10)=\quad \mathrm{A}(10)+\mathrm{B}(10)=\quad(\mathrm{A}+\mathrm{B})(10)=$
- Given functions f and g, we have (the domain of these combinations consists of numbers that are in the domain of each of the functions)

$$
\begin{array}{ll}
\text { Sum: }(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x}) & \text { Difference: }(\mathrm{f}-\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x}) \\
\text { Product: }(\mathrm{fg})(\mathrm{x})=\mathrm{f}(\mathrm{x})^{*} \mathrm{~g}(\mathrm{x}) & \text { Quotient: }\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}
\end{array}
$$

Examples: If $f(x)=x+3$ and $g(x)=3 x-1$, find the following (and the domain in each case)

$$
\begin{array}{ll}
(f+g)(x)= & (f-g)(x)= \\
\left(f^{*} g\right)(x)= & (f / g)(x)=
\end{array}
$$

- To find the composition of functions $(f \circ g)(x)=f(g(x))$, you basically plug the function $g(x)$ into the function $f(x)$ and vice versa
(composite functions are used when the output of one function is used as the input to another function as in applying discounts while shopping - see explanations on pp. 224-225 in the book)
- The domain of a composite function $\mathrm{f}(\mathrm{g}(\mathrm{x}))$ is the set of all numbers for x such that x is in the domain of g and $g(x)$ is in the domain of f

Example: At Hooper's store on Sesame Street, Virginia Tech jerseys are finally going on sale to make room for the shipment of the newly designed jerseys. Jerseys are already $\$ 10$ off, and you can take an additional 20\% off of that reduced price. If you find a men's jersey originally marked at $\$ 70$ and a women's jersey originally marked at $\$ 60$, what would be the sale price of each jersey?

Example: If $f(x)=2 x+3$, find $f(\odot)$

Examples: If $f(x)=x^{2}$ and $g(x)=2 x+1$, find each composition

$$
f(g(3))=
$$

$g(f(3))=$

$$
f(g(x))=\left(f{ }^{\circ} g\right)(x)=
$$

$$
g(f(x))=
$$

Examples: If $f(x)=\sqrt{x}$ and $g(x)=x+1$, find $(f \circ g)(x)$ and $(g \circ f)(x)$

Example: Express the given function h as a composition of 2 functions f and g so that $h(x)=f(g(x))$ where one of the functions is $3 x+4$.

$$
h(x)=(3 x+4)^{3} \quad h(x)=\sqrt{3 x+4}
$$

