Section 1.8 (Inverse Functions)

Suppose Oscar the Grouch has decided to offer a big sale on his trashy computers. He says that all laptops will be $\$ 300$ off. Putting this into function form, if the laptop's original price is represented by x , then we would have $\mathrm{f}(\mathrm{x})=$ \qquad . Unfortunately for Oscar, the tabloids discovered that just prior to the sale, Oscar had jacked up the prices on all of his computers by $\$ 300$ anyway. His price increase is represented by $g(x)=x+$ 300.

Example: Find $f(g(x))$ and $g(f(x))$ based on these functions.

Given 2 functions $f(x)$ and $g(x)$, if $f(g(x))=x$ for every x in the domain of g and $g(f(x))=x$ for every x in the domain of f, then the function g is the inverse of f and can be denoted as $g(x)=f^{-1}(x)$

Examples: Find $f(g(x))$ and $g(f(x))$ and determine if the given functions are inverses of each other.

$$
f(x)=9 x \text { and } g(x)=\frac{x}{9}
$$

$$
f(x)=4 x-7 \text { and } g(x)=\frac{x+7}{4}
$$

For a one-to-one function not defined as a set of ordered pairs as above, you can find the inverse by

1. Replace $f(x)$ with y
2. Interchange x and y
3. Solve for y
4. Replace y with $f^{-1}(x)$

Example: Find the equation of the inverse of

$$
f(x)=\frac{3}{x}-1 \quad g(x)=2 x+3 \quad h(x)=x^{3}-3
$$

Recall that for a relationship to be a function, each element in the domain (x-value) had to correspond to only one element in the range (y-value). For a given function to be one-to-one (and have an inverse), the reverse must also be true (each y-value must correspond to only one x-value).
Example: Determine whether each function described is one-to-one.
$f=\{(7,3),(-1,1),(5,0),(4,-2)\}$
Domain Range
$\mathrm{g}=\{(-3,2),(6,3),(2,14)$
Domain
Range

Similarly to the vertical line test for functions, a horizontal line test can determine if a given function is one-toone (why?)
Example: Which of the following have inverse functions?

The graph of f^{-1} is the graph of f reflected about the line $y=x$ (since we are simply switching x and y) -show example on the board
Example: Find the inverse of the following (if it exists), graph the function and its inverse and give the domain and range of the function

$$
f(x)=(x+2)^{3}
$$

$$
g(x)=\sqrt{x+1} \quad x \geq 0
$$

