Section 1.9 (Distance and Midpoint Formulas; Circles)

Using the Pythagorean Theorem $\left(a^{2}+b^{2}=c^{2}\right)$, we can find the distance between 2 points $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ in the rectangular coordinate system.

$$
\begin{aligned}
d^{2} & =\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
\end{aligned}
$$

Example: Find the distance between $(-4,9)$ and $(1,-3)$

Using this distance formula, we can derive a formula to find the midpoint of a line segment connecting 2 points as midpoint $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.
Example: Find the dist. between the given points and the midpoint of the line segment connecting them.

$$
P=(4,-6) \text { and } Q=(-2,5)
$$

$$
P=(3 \sqrt{3}, \sqrt{2}) \text { and } Q=(-\sqrt{3}, \sqrt{2})
$$

Example: Starting at the origin $(0,0)$ plot the following
a) Point that is 2 units away on the right $(2,0)$
b) Point that is 2 units away up $(0,2)$
c) Point that is 2 units away on the left $(-2,0)$

If we were to plot all points that were 2 units away from the origin, it would make a circle of radius 2 .

A circle is the set of all points that are equidistant from a fixed point called the center. The fixed distance from the circle's center to any point on the circle is called the radius.

The standard form of the equation of a circle with center point (h, k) and radius r is

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Examples: Write the standard form of the equation of the circle with...
Center $(0,0)$ and radius 4
Center ($-2,3$) and radius 2

Example: Find the center and radius of the circle whose equation is...

$$
\begin{array}{ll}
(x-2)^{2}+(y+3)^{2}=4 & (x+3)^{2}+y^{2}=1 \\
\text { Center }=(& \text { Center }=(\\
\text { Radius }= & \text { Radius }=
\end{array}
$$

Example: Graph each circle in the above example

Discuss the following stuff only if time allows
Example: Multiply out an example from above and set equal to 0

The general form of the equation of a circle is $x^{2}+y^{2}+D x+E y+F=0-D, E$, and F are real numbers
We've shown above that by multiplying out an equation in standard form and setting it equal to 0 . You can also do the reverse by taking an equation in general form and converting it to general form. To do this, we complete the square on x and y (to review completing the square, you can also see section P.7, pgs. 92-93)

Example: Write in standard form

$$
x^{2}+y^{2}+4 x-6 y-23=0
$$

