Section 2.1 (Complex Numbers)

In this section we travel to an imaginary place called the complex number system

- The imaginary unit i is used to denote the square root of $-1\left(i^{2}=-1\right.$ and $\left.\sqrt{-1}=i\right)$

Using i, we can express the square root of any number $(\sqrt{\mathbf{- 2 5}}=\sqrt{\mathbf{- 1 (2 5)}}=(\sqrt{\mathbf{- 1}}) \sqrt{\mathbf{2 5}}=\mathbf{5 i})$
The complex number system contains all real numbers and can be written as $\mathbf{a}+\mathbf{b i}$
Examples: The following are examples of complex numbers

Complex numbers can be manipulated as follows (given $a+b i$ and $c+$ di as complex numbers)

- $\quad \mathbf{a}+\mathbf{b i}=\mathbf{c}+\mathbf{d i}$ if and only if the real parts are equal and the imaginary parts are equal ($a=b$ \& $\mathbf{c}=\mathrm{d}$)
- \quad sum $=>$ add the real parts and then add the imaginary parts $=>(\mathbf{a}+\mathbf{b i})+(\mathbf{c}+\mathbf{d i})=(\mathbf{a}+\mathbf{c})+(\mathbf{b}+\mathbf{d}) \mathbf{i}$
- \quad difference $=>$ same as sum but with subtraction $=>(a+b i)-(c+d i)=(a-c)+(b-d) i$

Examples: Add / Subtract
$(5+2 i)+(4-3 i)=$
$6 i-(2-i)=$
$(-2-4 i)+(-3)=$
$(3+4 i)-(2+3 i)=$

Multiplying complex numbers is similar to polynomials, replacing occurrences of $\mathbf{i}^{\mathbf{2}}$ with -1
Examples: Multiply (remember the FOIL method?)
$-5 i * 3 i=$
$-2 i(6-2 i)=$
$(3-4 i)(6+i)=$
$(1-2 i)^{2}=$
$(6+5 i)(6-5 i)=$

Complex numbers ($\mathbf{a}+\mathbf{b i}$) and ($\mathbf{a} \mathbf{- b i}$) are called complex conjugates of each other and

$$
(a+b i)(a-b i)=a^{2}+b^{2}(\text { real }) \quad(a-b i)(a+b i)=a^{2}+b^{2}(\text { real })
$$

We use complex conjugates to divide a complex number (multiply top and bottom by the conjugate of the denominator to eliminate imaginary number in the denominator)

Examples: Divide (write answer in the standard form a +bi)

$$
\frac{3+i}{2-3 i} \quad \frac{7+4 i}{2-5 i}
$$

Keep in mind that the product rule for radicals doesn't necessarily hold true for imaginary numbers (when multiplying, always write numbers in terms of i first)

$\sqrt{-4} \sqrt{-9}=2 i(3 i)=6 i^{2}=6(-1)=-6$ YES

When performing operations with square roots of negative numbers, begin by expressing all square roots in terms of \mathbf{i}

Examples: Perform the indicated operations and write the result in standard form

$$
(-2+\sqrt{-3})^{2}
$$

$$
\frac{-14+\sqrt{-12}}{2}
$$

Recall that a quadratic equation can be expressed in the general form as $a x^{2}+b x+c=0, a \neq 0$. Also, all quadratic equations can be solved by the quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

This sometimes results in imaginary numbers that are complex conjugates.
Example: Solve using the quadratic formula

$$
x^{2}-2 x+2=0 \quad 7 x^{2}=2 x-1
$$

