- Let's review the basic graph of $f(x)=x^{2}$

x	$f(x)=x^{2}$
-3	9
-2	4
-1	1
0	0
1	1
2	4
3	9

Standard Form

- The graphs of quadratic functions are parabolas
- Standard form

$$
f(x)=a(x-h)^{2}+k
$$

- If $a>0$, the parabola opens upward
- If $a<0$, the parabola opens downward
- Vertex $\Rightarrow>(h, k)$
- Axis of symmetry $\Rightarrow>=h$
- h controls vertex movement left and right
- k controls vertex movement up and down
- Examples:

Find the coordinates of the vertex for the given quadratic functions and give the axis of symmetry

$$
f(x)=-2(x-3)^{2}+7
$$

$g(x)=4(x-1)^{2}+3$
$h(x)=-(x+5)^{2}-1$
Vertex:
Axis of symmetry:
Opens \qquad

Vertex:
Axis of symmetry:
Opens \qquad

Vertex:
Axis of symmetry:
Opens \qquad

Examples

- Graph the quadratic function. Give the axis of symmetry, domain, and range of each function.

$$
f(x)=(x-2)^{2}+1
$$

$$
f(x)=-(x+1)^{2}-1
$$

See pg 288 in the book for a 5-step guide to graphing quadratic functions in standard form

Another Form

- Another common form is used for parabolas as well

$$
f(x)=a x^{2}+b x+c
$$

- Functions of this form can be converted to standard form by completing the square
- If $a>0$, the parabola opens upward
- If $a<0$, the parabola opens downward
- Vertex $\Rightarrow\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right)$
- Find x-intercepts by solving $f(x)=0$
- Find y-intercept by finding $f(0)$
- Examples:

Find the coordinates of the vertex for the given quadratic functions and give the x and y intercepts

$$
\begin{aligned}
& f(x)=x^{2}+16 x+60 \\
& g(x)=-x^{2}+4 x+1 \\
& \text { Vertex: } \\
& x \text {-intercepts: } \\
& y \text {-intercept: } \\
& \text { Vertex: } \\
& x \text {-intercepts: } \\
& y \text {-intercept: } \\
& \text { Vertex: } \\
& \text { x-intercepts: } \\
& y \text {-intercept: }
\end{aligned}
$$

Examples

Book problems: 9,13,15,17,21,23,27,30,33,37

- Graph the quadratic function. Give the axis of symmetry, domain, and range of each function.

$$
f(x)=-x^{2}+4 x+1
$$

$$
f(x)=x^{2}-2 x-3
$$

See pg 292 in the book for a 5-step guide to graphing quadratic functions in standard form and applications

