The function defined by

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

is a polynomial of degree \boldsymbol{n} (the largest of the exponents) if n (the exponents) are nonnegative integers and $a_{n}, a_{n-1}, \ldots a_{2}, a_{1}, a_{0}$ (the coefficients) are real numbers.

The number a_{n}, the coefficient of the variable to the highest power, is called the leading coefficient Examples: Determine if the following are polynomials. If so, state the degree. If not, tell why.
$f(x)=-6 x+x^{9}$
$g(x)=6 x-\frac{1}{x}$
$h(x)=x^{2}+2 x+x^{1 / 2}-4$
$f(x)=3 x+4$
$g(x)=7$
$h(x)=\sqrt{3} x+\sqrt{x}$

Polynomial functions of degree 2 or higher have graphs that are smooth (rounded curves - no sharp corners) and continuous (no breaks and can be drawn without lifting pencil / pen) - note: what about degree 1 and degree 0 ?

Examples: Are the following graphs of polynomial functions?

Consider the trend of $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{4}-80 \mathrm{x}$

Trend	x	$f(x)=2 x^{4}-80 x$	Result
x is small (all terms have an impact)	0	$f(x)=0-0=0$	
x increases slightly (all terms still have some impact)	2	$2(16)-80(2)=-128$	Graph rises right
x is large (the leading term dominates like the Hokies in football)	6	$2(625)-80(5)=625$	

As x increases / decreases without bound, the graph of the polynomial function

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

eventually rises or falls depending on the leading term (term with the largest degree - the coefficient and the variable part).
The key is to look at the degree of the variable and the sign of the coefficient in the leading term
> Degree n is odd

- Leading coefficient is positive => Graph falls to the left and rises to the right
- Leading coefficient is negative => Graph rises to the left and falls to the right
> Degree n is even
- Leading coefficient is positive => Graph rises on both sides
- Leading coefficient is negative => Graph falls on both sides

Examples: Look at the chart on page 304 and use the Leading Coefficient Test to determine the end behavior of the graph of the following

$$
f(x)=3 x^{7}-2 x^{5}-4 x^{2}+6 \quad g(x)=8 x^{6}+4 x^{5}+8 \quad h(x)=-4 x^{4}+3
$$

The values of x for which the polynomial function $f(x)$ is equal to 0 are called the zeros of f (also called the roots or solutions of f). Each real root is an x -intercept of the graph of the polynomial function.
Example: Find all zeros of...

$$
f(x)=x^{3}+2 x^{2}-4 x-8 \quad g(x)=x^{4}-4 x^{2}
$$

In the $2^{\text {nd }}$ example just shown, the factorization was $g(x)=x^{2}(x+2)(x-2)$. The factor x occurs twice and the factors $(x+2)$ and $(x-2)$ occur once. The number of times a factor occurs gives the multiplicity of that zero. So our solution 0 has multiplicity 2 and our solutions 2 and -2 have multiplicity 1.

If a zero (solution) has even multiplicity, the graph touches the x-axis at this point and turns around. If a zero (solution) has odd multiplicity, the graph crosses the x-axis at this point.
Example: Find the zeros / the multiplicity of each zero, and state the behavior of the graph at each zero

$$
g(x)=x^{4}-4 x^{2} \quad f(x)=-4(x+1 / 2)^{2}(x-5)^{3}
$$

You can use the facts learned in this section and other steps mentioned (pg. 310) to sketch graphs of polynomial functions (note additional steps of finding y-intercept by finding $f(0)$ and determining possible symmetry by looking at $f(-x)=f(x)$: y-axis symmetry, $f(-x)=-f(x)$: origin symmetry)
Examples: After reviewing the chart and steps on pg. 310, use those steps to graph $x^{3}-3 x^{2}$ on the board

