Recall that polynomial division is similar to long division with bigger numbers. You can think of the dividend as $\mathrm{f}(\mathrm{x})$, divisor as $\mathrm{d}(\mathrm{x})$, quotient as $\mathrm{q}(\mathrm{x})$, and remainder as $\mathrm{r}(\mathrm{x})$ (see online HW)
Examples: Divide

$$
x^{2}+14 x+45 \text { by } x+9
$$

$$
\left(6 x^{3}+13 x^{2}-10 x-24\right) \div(3 x-4)
$$

$$
\begin{array}{ll}
\mathrm{q}(\mathrm{x})= & \mathrm{q}(\mathrm{x})= \\
\mathrm{r}(\mathrm{x})= & \mathrm{r}(\mathrm{x})= \\
& \\
\frac{2 x^{4}+3 x^{3}-7 x-10}{x^{2}-2 x} &
\end{array}
$$

$$
\begin{aligned}
& q(x)= \\
& r(x)=
\end{aligned}
$$

Remember that you can use synthetic division to divide if the divisor is of the form $\mathrm{x}-\mathrm{c}(\mathrm{pg} .320)$.
Examples: Divide using synthetic division

$$
x^{2}+14 x+45 \text { by } x+9 \quad x^{3}-7 x-6 \text { by } x+2
$$

Remainder Theorem: If a polynomial $f(x)$ is divided by $x-c$, then the remainder is $f(c)$
Example: Find $f(2)$ if $f(x)=4 x^{4}+5 x^{2}-6$, then find the remainder of $\left(4 x^{4}+5 x^{2}-6\right) \div(x-2)$
$f(2)=$
2|

Factor Theorem: Given a polynomial function $f(x)$

1. If $f(c)=0(--c$ is a solution or zero of $f(x)--)$ then $x-c$ is a factor of $f(x)$
2. If $x-c$ is a factor of $f(x)$, then $f(c)=0$

Example: Solve the equation $15 x^{3}+14 x^{2}-3 x-2=0$ given that -1 is a zero of $f(x)=15 x^{3}+14 x^{2}-3 x-2$

