Section 2.5 (Zeros of Polynomial Functions)

The Rational Zero Theorem (pg. 327) allows us to make a list of all possible zeros (solutions) of a polynomial function with integer coefficients

$$
\text { Possible rational zeros }=\frac{\text { Factors of the constant term (on the end) }}{\text { Factors of the leading coefficient (the beginning) }}
$$

Example: List all possible rational zeros for $f(x)=x^{3}+2 x^{2}-5 x-6$

Constant term $=$	Factors $=$
Leading coefficient $=$	Factors $=$

Possible zeros = \{ \qquad
actors =

Possle zeras \square
Given those rational zeros, we can then use synthetic division to determine a legitimate zero for the function. Example: Test the above possible zeros using synthetic division to find an actual zero

1	2	-5	-6

Since \qquad is a zero / solution (because of the remainder of 0), then x - \qquad $=\mathbf{x + 1}$ is a factor or

$$
f(x)=x^{3}+2 x^{2}-5 x-6=(x+1)\left(x^{2}+x-6\right)=(x+1)(x+3)(x-2)
$$

--- using results from synthetic division ---

Therefore the solution set of $f(x)=x^{3}+2 x^{2}-5 x-6$ or the zeros of the given $f(x)$ are $\{$
Example: Solve...

$$
x^{3}+8 x^{2}+11 x-20=0 \quad x^{3}+x^{2}-5 x-2=0
$$

Example: Find the zeros of $f(x)=x^{4}-6 x^{3}+22 x^{2}-30 x+13$

Properties of roots of polynomial equations:

1. A polynomial of degree n has n roots (counting multiple roots separately)
2. If $a+b i$ is a root to a polynomial equation $(b \neq 0)$, then the conjugate $a-b i$ is also a root

Notice in the above example, we had solutions of $\{1,2 \pm 3 i\}$ which looks to be only 3 roots; however, our factorization was $(x-1)^{2}(2 \pm 3 i)=(x-1)(x-1)(2+3 i)(2-3 i)$, so by counting those factors separately, we indeed have 4 roots for the $4^{\text {th }}$ degree equation.
Using the above properties and the Linear Factorization Theorem (pg. 333), we can now find polynomials if given certain information.
Example: Find a $3^{\text {rd }}$ degree polynomial function $f(x)$ with real coefficients such that 2 and $5 i$ are zeros and $f(-1)$ $=-234$ (write answer in standard form)

By Descartes' Rule of Signs (pg. 334), the number of positive and negative real roots possible within a polynomial function $f(x)$ can be examined by looking at the sign changes within $f(x)$ and $f(-x)$
Example: Determine the possible numbers of positive and negative real zeros of $f(x)=-7 x^{3}+4 x^{2}-7 x+4$

