Section 2.6 (Rational Functions and Their Graphs)

Rational functions are quotients of polynomial functions that can be expressed as

$$
f(x)=\frac{p(x)}{q(x)}, \quad \text { where } \mathrm{p} \text { and } \mathrm{q} \text { are polynomial functions and } \mathrm{q}(\mathrm{x}) \neq 0
$$

Example: Find the domain of each rational function (all real \#'s where the denominator does not equal 0)

$$
f(x)=\frac{x^{2}-25}{x-5} \quad g(x)=\frac{-2 x}{x^{2}+6 x-16} \quad h(x)=\frac{x+5}{x^{2}+25}
$$

$$
\{x \mid x \neq
$$

\qquad

Given the function $f(x)=\frac{1}{x-2}$, we see that $x=2$ is not in the domain of $f(x)$, but what happens as x approaches $x=2$?
x approaches 2 from left (denoted as $\mathrm{x} \rightarrow 2^{-}$), $\mathrm{f}(\mathrm{x}) \rightarrow$ \qquad

$$
f(0)=-1 / 2 \quad f(1)=-1 \quad f(1.99)=-100
$$

x approaches 2 from right (denoted as $x \rightarrow 2^{+}$), $f(x) \rightarrow$ \qquad

$$
f(4)=\quad f(3)=\quad f(2.001)=
$$

What happens to the above graph and $f(x)$ as $x \rightarrow \infty$? as $x \rightarrow-\infty$?

Look at HW example with time
Notice how the graph above approaches but never touches the line $x=2$. A line $x=a$ (such as this) is called a vertical asymptote when $f(x)$ increases or decreases without bound as x approaches a.
Given simplified rational function $f(x)=\frac{p(x)}{q(x)}$, if a is a zero of $\mathrm{q}(\mathrm{x})$, then $\mathrm{x}=\mathrm{a}$ is a vert. asymptote of $\mathrm{f}(\mathrm{x})$
Example: Find the vertical asymptotes, if any, of the given rational function...

$$
f(x)=\frac{x}{x^{2}-1} \quad g(x)=\frac{x-2}{x^{2}-4} \quad h(x)=\frac{x+5}{x^{2}+25}
$$

Using the graph above again, we see that as x gets bigger and bigger, $\mathrm{f}(\mathrm{x})$ approaches \qquad . A line $y=b$ (such as this) is called a horizontal asymptote if $f(x) \rightarrow b$ as x increases or decreases without bound. Given a rational function where the degree of the numerator is n and the degree of the denominator is $\mathrm{m} .$. .
> If $\mathrm{n}<\mathrm{m}$, the x -axis $($ or $\mathrm{y}=0$) is the horizontal asymptote of the graph
> If $\mathrm{n}=\mathrm{m}$, the line $\mathrm{y}=$ leading coefficient of the numerator / leading coefficient of the denominator is the horizontal asymptote of the graph
> If $\mathrm{n}>\mathrm{m}$, the graph has no horizontal asymptote

Example: Find the horizontal asymptote, if any, of the graphs of the following...

$$
f(x)=\frac{9 x^{2}}{3 x^{2}+1} \quad g(x)=\frac{9 x}{3 x^{2}+1} \quad h(x)=\frac{9 x^{3}}{3 x^{2}+1}
$$

Numerator deg. =
Denominator deg. $=$

The book lays out a seven step method for graphing rational functions (p . 347)

1. Determine symmetry $=>f(-x)=f(x): y$-axis symmetry, $f(-x)=-f(x)$: origin symmetry
2. Find y-intercept
3. Find x-intercept(s)
4. Find vertical asymptote(s)
5. Find horizontal asymptote(s)
6. Plot points between x-intercepts and vertical asymptotes (and other points if desired)
7. Graph the function

Examples: Use this method to graph the following...

$$
f(x)=\frac{3 x-3}{x-2} \quad g(x)=\frac{x^{2}+x-2}{x^{2}-16}
$$

