Section 3.1 (Exponential Functions)

An exponential function with base b can be defined $a s f(x)=b^{x}$ where b is a positive constant other than 1 and x is any real number (notice the variable x IS the exponent in this case)
Examples include $f(x)=2^{x}, g(x)=10^{x}$, and $h(x)=\left(\frac{1}{2}\right)^{x-1}$
You can typically evaluate exponential expressions using calculator buttons (y ${ }^{\mathrm{x}}$) or (^)
Example: It was recently discovered that at the Cookie Monster Mall in Sesame Street that the exponential function $f(x)=40(1.6)^{x}$ can be used to model spending. Here, $f(x)$ is the average amount spent (in dollars) at the mall after x hours. Learn to use your calculator functions to find the average amount of money spent after 4 hours in the Mall.

$$
f(4)=40(1.6)^{4}=
$$

Exponential functions have a wide variety of applications, and a common base in exponential applications is the number \boldsymbol{e}.

The number \boldsymbol{e} is defined as the value that $\left(1+\frac{1}{n}\right)^{n}$ approaches as n gets bigger $(\mathrm{n} \rightarrow \infty)$.
The irrational number \boldsymbol{e}, approximately 2.72 , is called the natural base, and should be available on your calculators as ($\boldsymbol{e}^{\boldsymbol{x}}$).
Example: Approximate $\mathrm{e}^{2.4}$ and $\mathrm{e}^{-0.67}$ using your calculator.

$$
e^{2.4}=\quad e^{-0.67}=
$$

Let's look at some trends in the graphs of exponential functions
Example: Graph the following on the given axes by making a table of coordinates

x	$f(x)=3^{x}$	$g(x)=\left(\frac{1}{3}\right)^{x}$
-2		
-1		
0		
1		
2		

Discuss pages 391 and 392 for details on exponential graph characteristics

Examples: Use transformations on pg. 392 to describe the graphs of the following...
$f(x)=3^{x+2}$
$g(x)=e^{x}-4$
$h(x)=(2)^{x-3}+5 p(x)=-e^{x}$
$f(x)$ is the graph of 3^{x} shifted to the \qquad by \qquad places
$g(x)$
$h(x)$
$p(x)$
Examples: Graph one or more of the above examples or graph examples from the online HW
Money in savings accounts grows as a result of compound interest. Suppose you invest a sum of money (the principal) P at an annual percentage rate r compounded once per year (annually). Then the following table shows the accumulated value A of the money after so many years...

Time (years)	Value after compounding
0	$A=P$
1	$A=(P)+\left(P^{*} r\right)=P(1+r)$
2	$A=P(1+r)^{2}$
3	$A=P(1+r)^{3}$
t	$A=P(1+r)^{t}$

Example: If you invested $\$ 1000$ today at a rate of 2% compounded annually, at the end of 2 years, your investment would be valued at $\mathrm{A}=1000(1+0.02)^{2}=$

Many savings accounts compound interest more than once a year. In general, when compound interest is paid n times per year (what is n if interest is compounded semi-annually?), then in each time period, the interest rate is $(\mathrm{r} / \mathrm{n}$) and there are (nt) time periods in t years. Therefore after t years, the value of the investment is given by

$$
A=P\left(1+\frac{r}{n}\right)^{n t} \text { where } \mathrm{n} \text { is the number of compounding periods per year }
$$

Furthermore, some banks use continuous compounding where the number of compounding periods increases infinitely ($\mathrm{n} \rightarrow \infty$). Looking at the effect (pg. 395), we see that for continuous compounding our investment value will be given by

$$
A=P e^{r t}
$$

We can use these formulas to predict the value of investments
Example: Suppose Bill Gates has convinced you to invest that extra $\$ 5000$ you have lying around under your mattress. You want to invest the money for 4 years (while you get your garage constructed for your new Ferrari), and you have 2 options. You can invest in an account with a rate of 8% that compounds daily or an account with a rate of 7.75% that is compounded continuously. Which should you choose?

