Section 3.2 (Logarithmic Functions)

In the last section we defined an exponential function $f(x)=b^{x}$ where b is a positive constant other than 1 and x is any real number. Let's try to define the inverse of this function.

$$
y=b^{x} \text { (switch } x \text { and } y \text {) } \quad=>\quad x=b^{y} \text { (solve for } y \text {) } \quad=>\quad \text { ??? }
$$

The inverse function of the exponential function with base b is the logarithmic function with base b $f(x)=\log _{b} x$ is the logarithmic function with base b where $y=\log _{b} x$ is equivalent to $b^{y}=x$
There are 2 ways to express the same equation here

Example: Write the following equations in equivalent exponential form
$3=\log _{7} \mathrm{x}$
$\log _{3} 9=y$
$3=\log _{b} 64$

Example: Write the following equations in equivalent logarithmic form

$$
2^{5}=x \quad b^{3}=27 \quad \frac{1}{16}=2^{-4} \quad \sqrt{9}=3
$$

Given a logarithmic expression, you really ask yourself one question to evaluate the expression...
$\log _{3} 9$ means 3 to what power gives me 9 ? => because $3^{2}=9$ then $\log _{3} 9=2$
$\log _{25} 5$ means 25 to what power gives me 5 ? => because $25{ }^{? ?}=5$ then $\log _{25} 5=$ \qquad
Examples: Evaluate:

$$
\log _{4} 64 \quad \log _{5} \frac{1}{125} \quad \log _{36} 6 \quad \log _{3} \sqrt[5]{3} \quad \log _{9} 9 \quad \log _{8} 1
$$

Re-examining the inverse of the exponential function $\left(f(x)=b^{\mathrm{x}}\right)$, we can now go a little further...

$$
y=b^{x}(\text { switch } x \text { and } y) \quad \Rightarrow \quad x=b^{y}(\text { solve for } y) \quad \Rightarrow \quad \log _{b} x=y
$$

This gives us the inverse properties of logarithms $\log _{\mathrm{b}} \mathrm{b}^{\mathrm{x}}=\mathrm{x}$ and $b^{\log _{b} x}=x$
Examples: Evaluate $\log _{7} 7^{8}$ and $3^{\log _{3} 17}$

Considering that logarithmic functions are the inverses of exponential functions we know that their graphs should be symmetric about the line $y=x$...

Example: Graph $f(x)=3^{x}$ and $g(x)=\log _{3} x$ in the given coordinate system...

x	$f(x)=3^{x}$
-2	
-1	
0	
1	
2	

Vertical Asymptote =>

REVIEW CHARACTERISTICS OF GRAPHS (pgs. 404-405)
Table 3.4 on pg. 405 discusses transformations of these logarithmic graphs
Examples: Use these properties to describe the graphs of $f(x) \log _{5}(x+3)$ and $g(x)=5-\log _{2} x$

REVIEW ONLINE HW PROBLEMS 8-10

In looking at the domain of logarithmic functions, consider that in $\mathrm{y}=\log _{\mathrm{b}} \mathrm{x}$ that we said b is a positive constant. So, if a positive number is raised to any power, the sign of the result is \qquad .
The domain of a logarithmic function of the form $f(x)=\log _{b} x$ is the set of all positive real numbers
Example: Find the domain of $f(x)=\log _{4}(x-5)$

The logarithmic function with base 10 is called the common logarithmic function and the function $f(x)=\log _{10} x$ is usually expressed simply as $f(x)=\log x$ (the LOG button on calculators refers to the common log or $\log _{10} x$).
Example: Consider some properties of the common $\log (\mathrm{pg} .407)$ and use these properties to find $\log 10^{6}$

Furthermore, the logarithmic function with base e is called the natural logarithmic function and is usually expressed as $f(x)=\ln x$ (see pgs. 408-410 for properties and note the inverse properties).

Examples: Review online HW problems 13-14.

