Section 3.3 (Properties of Logarithms)

Because of the relationship between exponential and logarithmic forms, we find that the properties of exponents correspond to the properties of logarithms
> Product Rule: The logarithm of a product is the sum of the logarithms

$$
\log _{b}(M N)=\log _{b} M+\log _{b} N
$$

Examples: Use the product rule to expand each logarithmic expression
$\ln (4 x)=$
$\log _{6}(7 \cdot 11)=$
$\log (100 x)=$
> Quotient Rule: The logarithm of a quotient is the difference of the logarithms

$$
\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N
$$

Example: Use the quotient rule to expand each logarithmic expression
$\log \left(\frac{x}{2}\right)=$
$\log _{8}\left(\frac{23}{x}\right)=$
$\ln \left(\frac{e^{5}}{11}\right)=$
> Power Rule: The logarithm of a number with an exponent is the product of the exponent and the logarithm of that number

$$
\log _{b} M^{n}=n \log _{b} M
$$

Examples: Use the power rule to expand each logarithmic expression
$\ln x^{2}=$
$\log _{6}\left(3^{9}\right)=$
$\ln \sqrt[3]{x}=$
$\log (x+4)^{2}=$

You can use more than one of these properties in combination to expand logarithmic expressions Examples: Use the logarithmic properties to expand each logarithmic expression as much as possible

$$
\log _{b}\left(x^{4} \sqrt[3]{y}\right)=\quad \quad \log _{5}\left(\frac{\sqrt{x}}{25 y^{3}}\right)=
$$

Thinking of these properties in reverse allows us to condense logarithmic expressions
Examples: Write the following as a single logarithm
$\log _{4} 2+\log _{4} 32$
$2 \log (x-3)-\log x$
$\log (7 x+6)-\log x$
$2 \ln x+\frac{1}{3} \ln (x+5)$

We can use the change-of-base property to find logarithms in other bases (besides 10 and e)
> Change-of-base Property: The logarithm of M with base b is equal to the logarithm of M with any base divided by the logarithm of b with that same new base

$$
\log _{b} M=\frac{\log _{a} M}{\log _{a} b} \quad \text { (note that } \log _{b} M=\frac{\log M}{\log b}=\frac{\ln M}{\ln b} \text {) }
$$

Example: Use common logarithms (base 10) to evaluate $\log _{7} 2506$

Example: Use natural logarithms to evaluate $\log _{7} 2506$

