Section 4.2 (The Unit Circle)

The unit circle is the circle with radius 1 and center at the origin of the rectangular coordinate system. The equation of the unit circle is given by \qquad
Arc length $=\mathbf{s}=\mathbf{r} \boldsymbol{\theta}=1(\theta)=\theta$ (radian measure of the central angle is the same as the length of the intercepted arc)
One trigonometric function is defined as $\mathbf{y}=r \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$ (pronounced sine of θ)
This is a function of θ and you can see that the input to the function is θ (the angle in radians) and the output involves y (the y-coordinate of the point on the unit circle that corresponds to angle θ

Trigonometric functions defined...


```
\(\mathbf{y}=r \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta} \quad\) (note \(r=1\) in unit circle, giving \(\mathbf{y}=\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}\) )
\(x=r \cos \boldsymbol{\theta}\)
\(\mathbf{y} / \mathbf{x}=r \sin \theta / r \cos \theta=\boldsymbol{\operatorname { t a n }} \theta, \mathbf{x} \neq \mathbf{0}\)
```

$\csc \theta=1 / y, y \neq 0$
$\sec \theta=1 / x, x \neq 0$
$\cot \theta=x / y, y \neq 0$

Example: Find the values of the 6 trigonometric functions for the angle θ corresponding to the point $\boldsymbol{P}=\left(\frac{\sqrt{\mathbf{3}}}{\mathbf{2}}, \frac{\mathbf{1}}{\mathbf{2}}\right)$

Example: Find the same values at $\mathrm{P}=(0,-1)$

We can use these formulas to find the values of trigonometric functions at $t=\pi / 4$, remembering that the formula for our unit circle is $x^{2}+y^{2}=1$ and knowing that the point at this angle has $x=y$ (sketch and work on board)
The point $P=(a, b)$ on the unit circle corresponding to $t=\pi / 4$ is (\qquad , \qquad _)
Example: Use this point to find $\sin \pi / 4, \csc \pi / 4$, and $\cos \pi / 4$

Consider whether $\sin \theta$ and $\cos \theta$ are even or odd functions by examining $\sin (-\theta)$ and $\cos (-\theta)$ $\sin \theta=y, \quad \sin (-\theta)=$
$\cos \theta=x, \cos (-\theta)=$

Cosine and secant functions are \qquad $(\cos (-\theta)=\cos \theta, \sec (-\theta)=\sec \theta)$

Sine, cosecant, tangent, cotangent are \qquad $(\sin (-\theta)=-\sin \theta, \tan (-\theta)=-\tan \theta)$

Example: Find the value of each of the following trigonometric functions

$$
\sec \left(-\frac{\pi}{4}\right)=\quad \sin \left(-\frac{\pi}{4}\right)=
$$

Since $\sin \theta=y$ and $\csc \theta=1 / \mathrm{y}$, we also have $\csc \theta=1 / \sin \theta$ (we can use similar techniques to find)...

Reciprocal Identities

Quotient Identities

Example: Given $\sin \theta=\frac{2}{3}$ and $\cos \theta=\frac{\sqrt{5}}{3}$, find the value of the remaining 4 trig functions...

We can explore other relationships among the trig identities by examining the equation of the unit circle

$$
x^{2}+y^{2}=1 \quad \Rightarrow \quad(\cos \theta)^{2}+(\sin \theta)^{2}=1 \quad \Rightarrow \quad \sin ^{2} \theta+\cos ^{2} \theta=1 \quad \text { (common form) }
$$

Pythagorean Identities: $\sin ^{2} \theta+\cos ^{2} \theta=1 \quad 1+\tan ^{2} \theta=\sec ^{2} \theta \quad 1+\cot ^{2} \theta=\csc ^{2} \theta$

Example: Given that $\sin \theta=\frac{\mathbf{1}}{\mathbf{2}}$ and $0 \leq \theta \leq \frac{\pi}{2}$, find the value of $\cos t$ using a trig identity

Certain patterns in nature repeat again and again over a given period of time (tides every 12 hours for example). Trigonometric functions are often used to model periodic things. Consider a point (x, y) on the unit circle that travels along the perimeter over an angle of 2π radians (draw on board).
For any integer n and real number (angle) $\theta \quad \Rightarrow \quad \sin (\theta+2 \pi n)=\sin \theta$ and $\cos (\theta+2 \pi n)=\cos \theta$ \sin , \cos , \csc, and sec have period 2π. What about tan and cot (consider the same example and look at x and y coordinates after travelling over an angle of π radians).

For any integer n and real number (angle) $\theta \quad=>\quad \tan (\theta+\pi \mathrm{n})=\tan \theta \quad \tan$ has period π Example: Find the value of $\boldsymbol{\operatorname { c o t }}\left(\frac{5 \pi}{4}\right)$ and $\boldsymbol{\operatorname { c o s }}\left(-\frac{9 \pi}{4}\right)$

Confirm that you can use a calculator to evaluate trigonometric functions ($\sin \pi / 4$ and $\csc 1.5$)

