Section 4.3 (Right Triangle Trigonometry)

Trigonometry (measurement of triangles) is used in navigation, building, and engineering, among other applications as we will see throughout this section. Consider the angle $\pi / 3$ on the unit circle as examined in the last section. Now construct a right triangle by dropping a line segment from our point perpendicular to the x-axis.

Right Triangle Definitions of Trig. Functions
Using this right triangle with angle t and the knowledge that $y=\sin (t)$ and $x=\cos (t)$, we see that $\sin (\boldsymbol{\theta})=\mathbf{y}=\mathbf{y} / \mathbf{1}$ and $\cos (\boldsymbol{\theta})=\mathbf{x}=\mathbf{x} / \mathbf{1}$

In many applications it is helpful to interpret trigonometric functions using these right triangles. Using the triangle below, construct the six trigonometric functions ...

The six trigonometric functions of acute angle θ are defined as

	opposite	a	$\csc \theta$	hypotenouse c	
	hypotenous adjacent	C		opposite hypotenous	a
	hypotenou	C		adjacent	b
	opposite	a		adjacent	b
	adjacent	b		opposite	a

The trigonometric values of angle θ are the same despite how large the triangle is (see similar triangles on pg. 491)
Example: Find the value of each of the 6 trigonometric functions of θ in the figure

$\sin \theta=$
$\csc \theta=$
$\cos \theta=$
$\sec \theta=$
$\tan \theta=$
$\cot \theta=$

Example: Find the value of each of the 6 trigonometric functions of θ in the figure (simplify answers)

In section 4.2, we used points on the unit circle to evaluate the trigonometric identities of a 45° or $\pi / 4$ angle. We can similarly determine the trigonometric identities by constructing a right triangle with a 45° angle (see figure 4.34).
Example: If a triangle has angles of 90° and 45°, what must the other angle measure (how many total degrees are in a triangle)?

Example: Given that this is an isosceles triangle (2 equal angles and 2 equal sides), if we let the 2 equal legs have a length of 1 , what will be the length of the other side?

Example: Sketch triangle on board and determine trigonometric values of 45° or $\pi / 4$ angle

Figure 4.26 A $30^{\circ}-60^{\circ}-90^{\circ}$ triangle

Two other angles commonly found throughout trigonometry are 30° and $60^{\circ}(\pi / 6$ and $\pi / 3$ angle). We can derive information on these angles by starting with an equilateral triangle (3 equal angles and sides) and dividing it into 2 right triangles.

Example: Completely label the triangle on the left
Example: Find $\sin 30^{\circ}, \cos 60^{\circ}, \tan 30^{\circ}$, and $\tan 60^{\circ}$

You will need to be able to construct 45-45-90 and 30-60-90 triangles from memory by recalling these (practice on board with time)

Two angles are considered complements if their sum is 90° or $\pi / 2$. Refer to the right triangle below which has 2 acute angles that are complements (θ and $90-\theta$).

Example: Find $\sin \theta$ and $\cos (90-\theta)$

Because $\sin \theta=\cos (90-\theta)$ and vice versa, sin and \cos are called cofunctions

Cofunction Identities

$\sin \theta=\cos (90-\theta)---\cos \theta=\sin (90-\theta)$
$\tan \theta=\cot (90-\theta)---\cot \theta=\tan (90-\theta)$
$\sec \theta=\cos (90-\theta)--\quad \csc \theta=\sin (90-\theta)$

Example: Find a cofunction with the same value as the given expression: $\sin \left(\mathbf{4 6}^{\circ}\right) \cot (\pi / \mathbf{1 2})$

Many applications of right triangle trigonometry involve the angle made with an imaginary horizontal line. An angle formed by a horizontal line and the line of sight to an object above the horizontal line is called the angle of elevation (below the horizontal is called the angle of depression). - SEE FIGURE 4.37 - pg. 495
Example: Sighting the top of Lane Stadium, a surveyor measured the angle of elevation to be 24°. The transit (measuring platform) is 5 feet above the ground and 300 horizontally from the stadium. Find the stadium's height.

If two sides of a right triangle are known, you can use inverse trigonometric functions to find an acute angle θ
Example: Use you calculator to find θ where $\sin \theta=0.866$
Example: The flagpole in the middle of Sesame Street is 14 meters tall and casts a shadow 10 meters long. Sketch the problem and find the angle of elevation of the sun to the nearest degree.

