Graphs of Other Trigonometric Functions

- The tangent function has some properties that are different than the sinusoidal trig. functions, resulting in a graph that differs significantly
- The tangent function is undefined at $\pi / 2$ (and $-\pi / 2$, etc.)
- The period of the tangent function is π
- The tangent function is an odd function (meaning $f(-x)=-\tan x=-f(x)=-\tan x$ and that the graph is symmetric with respect to the origin)
- Consider the following table of values on the graph of $y=\tan x$

x	0	$\pi / 6$ (0.52)	$\pi / 4$ (0.79)	$\pi / 3$ (1.05)	$5 \pi / 12$ (1.31) $\left(75^{\circ}\right)$	$89 \pi / 180$ (1.55) $\left(89^{\circ}\right)$	$\pi / 2$ (1.57) $\left(90^{\circ}\right)$
$y=\tan \mathrm{x}$							

The graph of $y=\tan x$ has a vertical asymptote at $x=\pi / 2$

Graphs of Other Trigonometric Functions

- The graph of $y=\tan x$ can be completed on the interval $(-\pi / 2, \pi / 2)$ using the origin symmetry or by examining more points

Tangent curve characteristics

- Period $=\pi$
- Vertical Asymptotes occur at odd multiples of $\pi / 2$
- Odd function with origin symmetry
- An x-intercept occurs midway between asymptotes
- y-values of -1 and 1 occur halfway between x-intercept and asymptotes

Graphs of Other Trigonometric Functions

- We can use similar techniques as in the last section to look at variations of the tangent function graph $y=A \tan (B x-C)$

1. Find 2 consecutive vertical asymptotes ($-\frac{\pi}{2}<\mathrm{Bx}-\mathrm{C}<\frac{\pi}{2}$ implies $\mathrm{Bx}-\mathrm{C}=$ \qquad and $\mathrm{Bx}-\mathrm{C}=$ \qquad
2. Identify X -intercept (halfway between asymptotes)
3. Find points on graph $1 / 4$ and $3 / 4$ of way between asymptotes (y-coordinates here should be -A and A, respectively)
4. Steps 1-3 graph one full period of the function (add additional cycles to right / left as needed)

- Examples: Graph $y=3 \tan 2 x$ for $-\frac{\pi}{4}<x<\frac{3 \pi}{4} \quad$-and- $\quad 2$ full periods of $y=\tan \left(x-\frac{\pi}{2}\right)$

Graphs of Other Trigonometric Functions

- The graph of $y=\cot x$ is similar to that of $\tan x$ but is completed on the interval $(0, \pi)$ and is flipped vertically (moves down when going from left to right)

Cotangent curve characteristics

- Period $=\pi$
- Vertical Asymptotes occur at integral multiples of $\boldsymbol{\pi}$
- Odd function with origin symmetry
- An x-intercept occurs midway between asymptotes
- y-values of -1 and 1 occur halfway between x-intercept and asymptotes

Graphs of Other Trigonometric Functions

- We can use similar techniques as in tangent to look at variations of the cotangent function graph $y=A \cot (B x-C)$

1. Find 2 consecutive vertical asymptotes $(0<B x-C<\pi$ implies $B x-C=$ \qquad and $\mathrm{Bx}-\mathrm{C}=$ \qquad
2. Identify X -intercept (halfway between asymptotes)
3. Find points on graph $1 / 4$ and $3 / 4$ of way between asymptotes (y-coordinates here should be -A and A, respectively)
4. Steps 1-3 graph one full period of the function (add additional cycles to right / left as needed)

- Examples: Graph $y=1 / 2 \cot \frac{\pi}{2} x$

Graphs of Other Trigonometric Functions

- We can use the fact that $\csc x$ and $\sec x$ are the reciprocals of $\sin x$ and $\cos x$ to examine those graphs (using x-values of sin an cos, the corresponding y-values are simply the reciprocals of the y-values for \sin and cos)
- Consider the characteristics (notice the dashed red line indicating sin and cos)..

The Cosecant Curve: The Graph of $\boldsymbol{y}=\csc \boldsymbol{x}$ and Its Characteristics

Characteristics

- Period: 2π
- Domain: All real numbers except integral multiples of π
- Range: All real numbers y such that $y \leq-1$ or $y \geq 1:(-\infty,-1] \cup[1, \infty)$
- Vertical asymptotes at integral multiples of π
- Odd function, $\csc (-x)=-\csc x$, with origin symmetry

The Secant Curve: The Graph of $y=\sec x$ and Its Characteristics

Characteristics

- Period: 2π
- Domain: All real numbers except odd multiples of $\frac{\pi}{2}$
- Range: All real numbers y such that $y \leq-1$ or $y \geq 1:(-\infty,-1] \cup[1, \infty)$
- Vertical asymptotes at odd multiples of $\frac{\pi}{2}$
- Even function, $\sec (-x)=\sec x$, with y-axis symmetry

Graphs of Other Trigonometric Functions

- We can use the graphs of $\sin x$ and $\cos x$ to help graph $\csc x$ and $\sec x$

csc / sec curve characteristics

- x-intercepts of $\sin (\cos)$ curve correspond to vertical asymptotes of csc (sec) curve
- maximum point on sin (cos) curve corresponds to minimum on csc (sec) curve
- minimum point on \sin (cos) curve corresponds to maximum on $\csc (\mathrm{sec})$ curve
Example: Graph $y=2 \sec 2 x$ for $-\frac{3 \pi}{4}<x<\frac{3 \pi}{4}$

Example: Graph $y=\sin 2 x$ and then graph its reciprocal function $y=\csc 2 x$

Graphs of Other Trigonometric Functions

- Below are characteristics of the six basic trigonometry functions (review)...

Table 4.6 Graphs of the Six Trigonometric Functions

