Section 5.2 (Sum and Difference Formulas)

Cosine of the difference of two angles (see pg. 597 and below steps for visual proof or explore on board with time)

- \circ Start with unit circle and angles α and β having endpoints P and Q
- o List coordinates of P and Q for these angles (using $\cos \alpha$ for x and $\sin \alpha$ for y)
- Connect P and Q with line segment and apply distance formula
- Rotate triangle in line with x-axis and maintaining angle $\alpha \beta$
- Re-apply distance formula to get equivalent distance between P and Q (one point should now be (1,0))

$\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$

Example: Find the exact value of cos 30° using only 90° and 60° angles

Example: Find the exact value of $\cos 80^{\circ} \cos 20^{\circ} + \sin 80^{\circ} \sin 20^{\circ}$

Example: Verify the identity
$$\frac{\cos(\alpha-\beta)}{\cos \alpha \cos \beta} = 1 + \tan \alpha \tan \beta$$

We can use this difference formula to verify and establish other identities (see cofunction complements discussion pg. 599 that shows $cos(\pi/2 - \theta) = sin \theta$)

 $\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$ $\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$ $\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ $\sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$

<u>Example</u>: Suppose that sin α = 4/5 for a quadrant II angle α and sin β = ½ for a quadrant I angle β . Find the exact value of the following...

 $\cos \alpha$ $\cos \beta$ $\cos (\alpha + \beta)$ $\sin (\alpha + \beta)$

If we rewrite tan $(\alpha + \beta)$ using sin and cos, we can develop a formula for the tangent of sums and differences <u>Example</u>: Derive the identity for tan $(\alpha + \beta)$ -- Hint: divide top and bottom by cos α cos β

(Optional) Example: Derive the identity for tan $(\alpha - \beta)$ -- Hint: use tan $(\alpha - \beta)$ = tan $[\alpha + (-\beta)]$ (and tan is odd)

(Optional) Example: Verify the identity $\tan (x + \pi) = \tan x$

$\tan (\alpha + \alpha) = \frac{\tan \alpha + \tan \beta}{1 + \tan \beta}$	$\tan (\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$
$\tan (\alpha + \beta) = \frac{1}{1 - \tan \alpha \tan \beta}$	

<u>Example</u> (Extra Credit?): (#80 – pg. 606) A tuning fork is held a certain distance from your ears and struck. Your eardrums' vibrations after t seconds are given by $p = 3 \sin (2t)$. When a second tuning fork is struck, the formula $p = 2 \sin (2t + \pi)$ describes the effects of the sound on the eardrums' vibrations. The total vibrations then are given by $p = 3 \sin (2t) + 2 \sin (2t + \pi)$.

• Simplify p to s single term containing the sin

 If the amplitude of p is zero, no sound is heard. Based on your equation in the part above, does this occur with the two tuning forks in the exercise (Explain)