Section 5.2 (Sum and Difference Formulas)

Cosine of the difference of two angles (see pg. 597 and below steps for visual proof or explore on board with time)

- Start with unit circle and angles α and β having endpoints P and Q
- List coordinates of P and Q for these angles (using $\cos \alpha$ for x and $\sin \alpha$ for y)
- Connect P and Q with line segment and apply distance formula
- Rotate triangle in line with x-axis and maintaining angle $\alpha-\beta$
- Re-apply distance formula to get equivalent distance between P and Q (one point should now be $(1,0)$)

$$
\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta
$$

Example: Find the exact value of $\cos 30^{\circ}$ using only 90° and 60° angles

Example: Find the exact value of $\cos 80^{\circ} \cos 20^{\circ}+\sin 80^{\circ} \sin 20^{\circ}$

Example: Verify the identity $\frac{\cos (\alpha-\beta)}{\cos \alpha \cos \beta}=1+\tan \alpha \tan \beta$

We can use this difference formula to verify and establish other identities (see cofunction complements discussion pg. 599 that shows $\cos (\pi / 2-\theta)=\sin \theta)$

$$
\begin{aligned}
& \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
& \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
& \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
& \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta
\end{aligned}
$$

Example: Suppose that $\sin \alpha=4 / 5$ for a quadrant II angle α and $\sin \beta=1 / 2$ for a quadrant I angle β. Find the exact value of the following...

$$
\cos \alpha \quad \cos \beta \quad \cos (\alpha+\beta) \quad \sin (\alpha+\beta)
$$

If we rewrite $\tan (\alpha+\beta)$ using sin and cos, we can develop a formula for the tangent of sums and differences
Example: Derive the identity for $\tan (\alpha+\beta)$
-- Hint: divide top and bottom by $\cos \alpha \cos \beta$
(Optional) Example: Derive the identity for $\tan (\alpha-\beta) \quad$-- Hint: use $\tan (\alpha-\beta)=\tan [\alpha+(-\beta)]$ (and \tan is odd)
(Optional) Example: Verify the identity $\tan (x+\pi)=\tan x$

$$
\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \quad \tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}
$$

Example (Extra Credit?): (\#80 - pg. 606) A tuning fork is held a certain distance from your ears and struck. Your eardrums' vibrations after t seconds are given by $p=3 \sin (2 t)$. When a second tuning fork is struck, the formula $p=2 \sin (2 t+\pi)$ describes the effects of the sound on the eardrums' vibrations. The total vibrations then are given by $p=3 \sin (2 t)+2 \sin (2 t+\pi)$.

- Simplify p to s single term containing the sin
- If the amplitude of p is zero, no sound is heard. Based on your equation in the part above, does this occur with the two tuning forks in the exercise (Explain)

