Section 5.3 (Double-Angle, Power-Reducing, and Half-Angle Formulas)

In this section, we continue to use sum formulas to look at other basic identities

Double-Angle Formulas

sin 2θ = sin (θ + θ) =			= $2 \sin \theta \cos \theta$
$\cos 2\theta = \cos (\theta + \theta) =$			$=\cos^2\theta - \sin^2\theta$
tan 2θ = tan (θ + θ) =			$=\frac{2\tan\theta}{1-\tan^2\theta}$
Example: If sin θ = 4/5 and θ lies in quadrant II, find the exact value of the following			
sin 20	cos 2θ	tan 2θ	Study Tip
			The 2 that appears in each of the double-angle expressions cannot be pulled to the front and

Example: Find the exact value of $\cos^2 15^\circ - \sin^2 15^\circ$

There are three forms of the double angle formula for $\cos 2\theta$. Using the Pythagorean identity, $\sin^2 \theta + \cos^2 \theta = 1$, we can derive (sometimes it is helpful to express in terms of just one trigonometric function) ...

 $\cos 2\theta = \cos^2 \theta - \sin^2 \theta = \cos^2 \theta - (1 - \cos^2 \theta) = \cos^2 \theta - 1 + \cos^2 \theta$ = $2\cos^2 \theta - 1$

 $\cos 2\theta = \cos^2 \theta - \sin^2 \theta =$

(Optional) Example: Verify the identity $\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta$

Power-Reducing Formulas

$$\Rightarrow \sin^2 \theta = \frac{1 - \cos 2\theta}{2}$$
$$\Rightarrow \cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$
$$= \frac{1 - \cos 2\theta}{1 + \cos 2\theta}$$

written as a coefficient.

 $= 1 - 2 \sin^2 \theta$

Incorrect! $\sin 2\theta = 2 \sin \theta$ $\cos 2\theta - 2 \cos \theta$ $\tan 2\theta = 2 \tan \theta$

 $\cos 2\theta = 1 - 2 \sin^2 \theta \Longrightarrow$ (-- solve for $\sin^2 \theta \dashrightarrow$)

 $\cos 2\theta = 2\cos^2 \theta - 1 \Longrightarrow$

$$\tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} =$$

Book problems:

Example: Write an equivalent expression for sin⁴ x that doesn't contain powers of trig. functions greater than 1

Half-Angle Formulas

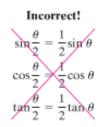
$$\sin\frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos\alpha}{2}} \qquad \qquad \cos\frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos\alpha}{2}} \qquad \qquad \tan\frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos\alpha}{1 + \cos\alpha}}$$

(The ± symbol indicates that you determine the sign based on where the half-angle lies)

Example: Use $\cos 210^\circ = -\sqrt{3}/2$ to find the exact value of $\cos 105^\circ$

Study Tip

The $\frac{1}{2}$ that appears in each of the half-angle formulas cannot be pulled to the front and written as a coefficient.



Some alternate forms of tan ($\alpha/2$) don't require us to determine sign

Example: See example 6 (pg. 613) and verify the identity $\tan \theta = \frac{\sin 2\theta}{1 + \cos 2\theta}$

These examples lead to the other forms of the tangent half-angle formula

$$\tan \frac{\alpha}{2} = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 + \cos \alpha}$$
(Optional) Example: Verify the identity $\tan \frac{\alpha}{2} = \frac{\sec \alpha}{\sec \alpha \csc \alpha + \csc \alpha}$

SEE SUMMARY OF PRINCIPAL TRIGONOMETRIC IDENTITIES ON PG. 614