Section 6.4 (Graphs of Polar Equations - OPTIONAL - No HW)

When plotting polar equations, we will typically utilize a polar grid. Just as with rectangular equations, we can use the point-plotting method to plot any polar equation

<u>Example</u>: See example 1 (pg. 675-6) and graph the equation $r = 4 \sin \theta$ with θ in radians.

θ	r = 4 sin θ
0	
π/6	
π/3	
π/2	
2π/3	
5π/6	
π	

The graphs of $r = a \cos \theta$ and $r = a \sin \theta$ are circles (what produces a graph of a circle centered around the origin?)

We can also use symmetry to graph polar equations more quickly

- 1. Replace θ with $-\theta$: same eqn. => symmetric w/ polar (x) axis
- 2. Replace (r,θ) with $(-r, -\theta)$: same => symmetric w/ $\theta = \pi/2$ (y)
- 3. Replace r with r: same => symmetric w/ pole (origin)

<u>Example</u>: Check for symmetry and graph the polar eqn. $r = 1 + \cos \theta$

Polar Axis (x)

Line $\theta = \pi/2$ (y)

Pole (origin)

Below is a summary of some other types of graphs of polar equations (review in the book)...

Limaçons

The graphs of

 $\begin{array}{ll} r=a+b\sin\theta, & r=a-b\sin\theta, \\ r=a+b\cos\theta, & r=a-b\cos\theta, & a>0, b>0 \end{array}$

are called **limaçons**. The ratio $\frac{a}{b}$ determines a limaçon's shape.

Rose Curves

The graphs of

$$r = a \sin n\theta$$
 and $r = a \cos n\theta$, $a \neq 0$,

are called rose curves. If n is even, the rose has 2n petals. If n is odd, the rose has n petals.

Lemniscates

The graphs of

$$r^2 = a^2 \sin 2\theta$$
 and $r^2 = a^2 \cos 2\theta$, $a \neq 0$

are called lemniscates.

Examples: Graph the following...

 $r = 1 - 2 \sin \theta$

r = 3 cos 2θ

 $r^2 = 4 \cos 2\theta$

<u>Example</u>: Test for symmetry about the polar axis on $r = 2 + \cos \theta$

Symmetric

Definitely not symmetric

Maybe symmetric