Section 6.4 (Graphs of Polar Equations - OPTIONAL - No HW)

When plotting polar equations, we will typically utilize a polar grid. Just as with rectangular equations, we can use the point-plotting method to plot any polar equation

Example: See example 1 (pg. 675-6) and graph the equation $r=4 \sin \theta$ with θ in radians.

θ	$r=4 \sin \theta$
0	
$\pi / 6$	
$\pi / 3$	
$\pi / 2$	
$2 \pi / 3$	
$5 \pi / 6$	
π	

The graphs of $r=a \cos \theta$ and $r=a \sin \theta$ are circles (what produces a graph of a circle centered around the origin?)

Polar Axis (x)

We can also use symmetry to graph polar equations more quickly

1. Replace θ with $-\theta$: same eqn. $=>$ symmetric $w /$ polar (x) axis
2. Replace (r, θ) with $(-r,-\theta)$: same $=>$ symmetric $w / \theta=\pi / 2(y)$
3. Replace r with $-r$: same $=>$ symmetric $w /$ pole (origin)

Example: Check for symmetry and graph the polar eqn. $r=1+\cos \theta$

Pole (origin)

Below is a summary of some other types of graphs of polar equations (review in the book)...

Limaçons

The graphs of

$$
\begin{array}{ll}
r=a+b \sin \theta, & r=a-b \sin \theta, \\
r=a+b \cos \theta, & r=a-b \cos \theta, \quad a>0, b>0
\end{array}
$$

are called limaçons. The ratio $\frac{a}{b}$ determines a limaçon's shape.

Rose Curves

The graphs of

$$
r=a \sin n \theta \quad \text { and } \quad r=a \cos n \theta, \quad a \neq 0
$$

are called rose curves. If n is even, the rose has $2 n$ petals. If n is odd, the rose has n petals.
$r=a \sin 2 \theta$
$r=a \cos 3 \theta$
$r=a \cos 4 \theta$
$r=a \sin 5 \theta$
Rose curve with 4 petals
Rose curve with 3 petals
Rose curve with 8 petals

Rose curve with 5 petals

Lemniscates

The graphs of

$$
r^{2}=a^{2} \sin 2 \theta \quad \text { and } \quad r^{2}=a^{2} \cos 2 \theta, \quad a \neq 0
$$

are called lemniscates.

Examples: Graph the following...
$r=1-2 \sin \theta$

$r=3 \cos 2 \theta$

$r^{2}=4 \cos 2 \theta$

Example: Test for symmetry about the polar axis on $r=2+\cos \theta$

