Section 6.5 (Complex Numbers in Polar Form: DeMoivre's Theorem)

A complex number $z=a+b i$ can be represented as a point (a, b) in a coordinate plane, as shown in the figure

This coordinate system is called the complex plane and every complex number corresponds to a number in this plane
Example: Plot each number in the complex plane:

$$
z=2+3 i \quad z=-3-5 i \quad z=-4 \quad z=-i
$$

The absolute value of a complex number is the distance from the origin to that point in the complex plane (sketch line / triangle in figure to examine the distance from (a, b) to the origin)

$$
|\mathbf{z}|=|\mathbf{a}+\mathbf{b} \mathbf{i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

Example: Determine the absolute value of each of $z=5+12 i$ and $2-3 i$

A complex number of the form $z=a+b i$ is said to be in rectangular form. Looking back at our figure, and letting r represent the distance (side) from point (a, b) to the origin, we have

$$
\begin{array}{cl}
r=\sqrt{a^{2}+b^{2}} & \cos (\theta)=\frac{a}{r} \\
& \sin (\theta)=\frac{b}{r} \\
a=r \cos (\theta) & b=r \sin (\theta)
\end{array}
$$

Substituting back into rectangular form gives

$$
z=a+b i=r \cos (\theta)+(r \sin (\theta)) i=\mathbf{z}=r(\cos (\theta)+i \sin (\theta))
$$

Example: Plot $\mathbf{Z = - 1} \mathbf{-} \mathbf{i} \sqrt{\mathbf{3}}$ in the complex plane and then express \mathbf{z} in polar form (radians for angle measure)

To multiply 2 complex numbers in polar form, we multiply the moduli $\left(r_{1}{ }^{*} r_{2}\right)$ and add the arguments $\left(\cos \left(\theta_{1}+\theta_{2}\right)+i\right.$ $\left.\sin \left(\theta_{1}+\theta_{2}\right)\right)$ - see explanation and proof on pg. 690 in book

$$
z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]
$$

Example: Find the product of the complex numbers given (leave answer in polar form)

$$
z_{1}=6\left(\cos \left(40^{\circ}\right)+i \sin \left(40^{\circ}\right)\right)
$$

$$
z_{2}=5\left(\cos \left(20^{\circ}\right)+i \sin \left(20^{\circ}\right)\right)
$$

To divide 2 complex numbers in polar form, we divide the moduli $\left(r_{1} / r_{2}\right)$ and subtract the arguments $\left(\cos \left(\theta_{1}+\theta_{2}\right)+i\right.$ $\sin \left(\theta_{1}+\theta_{2}\right)$) - see proof using algebraic complex number division in appendix in book if interested
Example: Find the quotient of the complex numbers given (leave answer in polar form)

$$
\left.\left.z_{1}=50\left(\cos \left(\frac{4 \pi}{3}\right)+i \sin \left(\frac{4 \pi}{3}\right)\right) \quad z_{2}=5\left(\cos \left(\frac{\pi}{3}\right)\right)+i \sin \left(\frac{\pi}{3}\right)\right)\right)
$$

We can also find powers of complex numbers in polar form using DeMoivre's Theorem. Consider $z^{2} \ldots$

$$
z=r(\cos (\theta)+i \sin (\theta)) \quad z^{2}=r(\cos (\theta)+i \sin (\theta)) r(\cos (\theta)+i \sin (\theta))=r^{2}(\cos (2 \theta)+i \sin (2 \theta)) \ldots
$$

This pattern continues for higher powers of z in polar form meaning $z^{n}=r^{n}(\boldsymbol{\operatorname { c o s }}(\mathbf{n} \theta)+i \boldsymbol{\operatorname { s i n }}(\mathbf{n} \theta))$
Example: Find $\left[2\left(\boldsymbol{\operatorname { c o s }}\left(\mathbf{3 0 ^ { \circ }}\right)+\mathrm{i} \boldsymbol{\operatorname { s i n }}\left(\mathbf{3 0 ^ { \circ }}\right)\right)\right]^{5}$ and write the answer in rectangular form

Example: Find $(1+i)^{4}$ using DeMoivre's Theorem and write the answer in rectangular form

OPTIONAL ---

DeMoivre's Theorem can basically be reverse engineered to find complex roots as well (see in-depth discussion on pg. 693 in the book)...

Complex number $\mathrm{w}=\mathrm{r}(\cos (\theta)+\mathrm{i} \sin (\theta))$ has n distinct nth roots that can be given as

$$
\mathrm{z}_{\mathrm{k}}=\sqrt[n]{r}\left[\cos \left(\frac{\theta+2 \pi k}{n}\right)+i \sin \left(\frac{\theta+2 \pi k}{n}\right)\right] \quad \mathrm{z}_{\mathrm{k}}=\sqrt[n]{r}\left[\cos \left(\frac{\theta+360^{\circ} \mathrm{k}}{n}\right)+i \sin \left(\frac{\theta+360^{\circ} \mathrm{k}}{n}\right)\right]
$$

where $\mathrm{k}=0,1,2, \ldots, \mathrm{n}-1$ (note that each root has the same modulus)
Example: Find all the complex fourth roots of $\mathbf{1 6 (\boldsymbol { \operatorname { c o s } } (\mathbf { 6 0 ^ { \circ } }) + \mathbf { i } \boldsymbol { \operatorname { s i n } } (6 0 ^ { \circ })) \text { and write the roots in polar form }}$

Example: Find all the cube roots of 27 . Write roots in rectangular form...

