Section 6.6 (Vectors)

Quantities that involve both a direction and magnitude are called vectors. Consider someone driving due north at 45 mph . The magnitude would be the speed (45 mph) and the direction would be the direction (due north or 90°)
Some quantities can be described using only magnitude (such as the temperature of the room), and these are called scalars.

We will concentrate on directed line segments where the magnitude of this vector is its length and the direction is the angle or slope. For 2 vectors to be equal, they must have the same magnitude and direction. Consider the vector $\mathbf{v}=\overrightarrow{P Q}$ and vector W below

(a) $\mathbf{v}=\mathbf{w}$ because the vectors have the same magnitude and same direction.

(b) Vectors \mathbf{v} and \mathbf{w} have the same magnitude, but different directions

(c) Vectors \mathbf{v} and \mathbf{w} have the same magnitude, but opposite directions.

(d) Vectors \mathbf{v} and \mathbf{w} have the same direction, but different magnitudes.

Example: Show that $\mathbf{u}=\mathbf{v}$ in the picture on the right

A vector can be multiplied by a real number (scalar). The effect of scalar multiplication is a change in vector magnitude (direction shows no change except that the direction reverses if multiplying by a negative number)

When adding 2 vectors \mathbf{a} and \mathbf{b}, you essentially place the initial point of vector \mathbf{b} on the terminal point of vector a and examine the resultant vector formed by connecting the initial point of \mathbf{a} with the terminal point of \mathbf{b} (or vice versa)
Vector subtraction is similarly found (consider $\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})$ and see figure 6.54)
In the rectangular coordinate system, we use vectors with magnitude 1 in the x and y directions (vector \mathbf{i} lies along the x -axis and vector \mathbf{j} lies along the y -axis). This allows us to represent a vector \mathbf{v} in the rectangular coordinate system using \mathbf{i} and \mathbf{j} (vector \mathbf{v} from $(0,0)$ to point (\mathbf{a}, b) is $\mathbf{v}=\mathbf{a} \mathbf{i}+\mathrm{b} \mathbf{j}$ with magnitude $\left(\|\mathbf{v}\|=\sqrt{a^{2}+b^{2}}\right)$

Example: Sketch vector $\mathbf{v}=\mathbf{3 i}-3 \mathbf{j}$ on the board and find its magnitude

With vectors not starting at the origin, vector \mathbf{v} can be expressed as $\mathbf{v}=\left(x_{2}-x_{1}\right) \mathbf{i}+\left(y_{2}-y_{1}\right) \mathbf{j}$
Example: Let \mathbf{v} be the vector from initial point $P_{1}=(-1,3)$ to terminal point $P_{2}=(2,7)$. Write \mathbf{v} in terms of \mathbf{i} and \mathbf{j}.

With vectors expressed in terms of \mathbf{i} and \mathbf{j}, we can easily perform vector addition, subtraction, scalar multiplication.
Example: If $\mathbf{v}=7 \mathbf{i}+3 \mathbf{j}$ and $w=4 \mathbf{i}-5 \mathbf{j}$, find each of the following vectors...
v+w
v-w
$8 v$
$-5 w$
$6 \mathbf{v}-3 \mathbf{w}$

The zero vector has magnitude 0 and is assigned no direction ($\mathbf{0}=\mathbf{0} \mathbf{i}+0 \mathbf{j}$).
A unit vector has magnitude 1, and it is often helpful to find the unit vector that has the same direction as a given vector (this is used frequently in applications). For any nonzero vector \mathbf{v}, the vector $\mathbf{v} /\|\mathbf{v}\| \|$ (v divided by its magnitude) is the unit vector that has the same direction as \mathbf{v}.

Example: Find the unit vector in the same direction as $\mathbf{v}=4 \mathbf{i}-3 \mathbf{j}$ and verify that it has magnitude 1

Let $\mathbf{v}=\mathbf{a i}+\mathrm{bj}$ be a nonzero vector with direction angle θ from the positive x -axis to \mathbf{v}. The vector can be expressed in terms of its magnitude and direction angle as $\mathbf{v}=\|\mathbf{v}\| \cos \theta \mathbf{i}+\|\mathbf{v}\| \sin \theta \mathbf{j}$

A common vector that represents the direction and speed of an object in motion is called a velocity vector
Example: The jet stream is blowing at 60 miles per hour in the direction of $N 45^{\circ} \mathrm{E}$. Express its velocity as a vector

Another common vector that represents forces acting on an object is a force vector. See example of holding a box in figure 6.61 and page 707 in the book.

The resultant force of 2 (or more) forces acting on an object is the vector sum of all forces. We can find the magnitude and direction of the resultant force after finding the resultant force vector...

Example: Two forces \mathbf{F}_{1} and \mathbf{F}_{2} of magnitude 30 and 60 pounds act on an object. The direction of \mathbf{F}_{1} is $\mathrm{N} 10^{\circ} \mathrm{E}$ and the direction of F_{2} is $\mathrm{N} 60^{\circ} \mathrm{E}$. Find the magnitude and direction angle of the resultant force (see example $9-\mathrm{pg} .707$)

Example (bonus if no time): Awesome quarterback Logan Thomas releases a football with a speed of 50 feet per second at an angle of 30° with the horizontal. Express this using a vector.

See \#'s 75, 76 in book (pg. 710)

