Section 6.7 (The Dot Product)

In the last section, we examined vector addition and scalar multiplication, which resulted in vectors. In this section, we examine the **dot product** of two vectors, which results in a scalar value. If $\mathbf{v} = a\mathbf{i} + b\mathbf{j}$ and $\mathbf{w} = c\mathbf{i} + d\mathbf{j}$ are vectors, the dot product is defined as

v • w = ac + db

...the sum of the products of their horizontal components and their vertical components.

Example: If $\mathbf{v} = 7\mathbf{i} - 4\mathbf{j}$ and $\mathbf{w} = 2\mathbf{i} - \mathbf{j}$, find $\mathbf{v} \cdot \mathbf{w}$, $\mathbf{w} \cdot \mathbf{v}$, and $\mathbf{w} \cdot \mathbf{w}$

As seen in the example, dot products of vectors is commutative $(\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v})$. Other properties are listed on the right.

The Law of Cosines can be used to derive another formula for the dot product that gives us a way to find the angle between 2 vectors.

Considering the triangle formed by vectors \mathbf{v} and \mathbf{w} below and applying the Law of Cosines gives $||\mathbf{u}|| = ||\mathbf{v}||^2 + ||\mathbf{w}||^2 - 2||\mathbf{v}|||\mathbf{w}||\cos\theta$

Using the horizontal and vertical components for each vector and substitution we can simplify to $\mathbf{v} \cdot \mathbf{w} = ||\mathbf{v}|| ||\mathbf{w}|| \cos \theta$ (see pg. 714)

1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ 2. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ 3. $\mathbf{0} \cdot \mathbf{v} = 0$ 4. $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$ 5. $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v})$

If u, v, and w are vectors, and c is a scalar, then

Properties of the Dot Product

Example: Find the angle between the vectors $\mathbf{v} = 4\mathbf{i} - 3\mathbf{j}$ and $\mathbf{w} = \mathbf{i} + 2\mathbf{j}$

Two vectors are parallel when the angle between the vectors is 0° or 180° (point in the same or opposite directions). Two vectors are called orthogonal when the angle between them is 90° (vectors meet at right angles).

Example: What is the dot product of 2 vectors v and w that are orthogonal?

The converse of this dot product is also true. If the dot product of $\mathbf{v} \cdot \mathbf{w}$ is _____, the vectors are orthogonal. <u>Example</u>: Are the vectors $\mathbf{v} = 2\mathbf{i} + 3\mathbf{j}$ and $\mathbf{w} = 6\mathbf{i} - 4\mathbf{j}$ orthogonal?

W

We've examined how to add up 2 vectors to get a resultant vector, but what if we wanted to do the reverse? Consider a boat on a tilted ramp. The force due to gravity (**F**) is pulling straight down on the boat. Part of this force (**F**₁) is pushing the boat down the ramp while another part of this force is pushing the boat down against the ramp at a right angle to the incline (**F**₂). These 2 orthogonal vectors are called the vector components of **F** (**F** = **F**₁ + **F**₂). A method for finding **F**₁ and **F**₂ involves projecting a vector onto another vector.

The vector projection of vector **v** onto vector **w** is $\operatorname{proj}_{\mathbf{w}} \mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|^2} \mathbf{w}$ (see explanation and graphs on pgs. 716-717 and example 4 for more details)

<u>Example</u>: If $\mathbf{v} = 2\mathbf{i} - 5\mathbf{j}$ and $\mathbf{w} = \mathbf{i} - \mathbf{j}$ find the projection of \mathbf{v} onto \mathbf{w}

Let v and w be 2 nonzero vectors. Vector v can be expressed as the sum of 2 orthogonal vectors v_1 and v_2 where v_1 is parallel to w and v_2 is orthogonal to w

$$\mathbf{v}_1 = \operatorname{proj}_{\mathbf{w}} \mathbf{v} = \frac{\boldsymbol{v} \cdot \mathbf{w}}{\|\boldsymbol{w}\|^2} \mathbf{w}$$
 $\mathbf{v}_2 = \mathbf{v} - \mathbf{v}_1$

<u>Example</u>: Let v and w be the vectors defined in the previous example. Decompose v into 2 vectors v_1 and v_2 , where v_1 is parallel to w and v_2 is orthogonal to w

Work – The work (W) done by a force (F) in moving an object from A to B is (see pgs. 718 and 719)...

$$= \mathbf{F} \cdot \overline{AB} = \|\mathbf{F}\| \|\overline{AB}\| \cos \theta.$$

$$\|\mathbf{F}\| \text{ is the } \\ \text{magnitude } \\ \text{of the force.} \\ \text{which the } \\ \text{constant force } \\ \text{is applied.} \\ \text{metion.}$$

Consider the work you would do in pulling a suitcase (or book-bag) down a hallway (notice that there are 2 forces being applied -x and y or horizontal and vertical - this ties in with vector decomposition)...

<u>Example</u>: Cookie monster has loaded his bag full of cookies, and is trying to drag it down the hall to Trigonometry class (ground is level). He applies a force of 30 pounds on a handle that makes an angle of 50° with the ground. How much work does her perform in pulling the bag 150 feet?

