Section 9.3 (The Parabola)

Parabolas are explored in Pre-Calculus Algebra (having the form $y=a(x-h)^{2}+k$ or $y=a x^{2}+b x+c$), so we will look at a couple different attributes in this class

A parabola is the set of all points in a plane that are equidistant from a fixed line (directrix) and a fixed point (focus) not on the line

Here is a summary of what you should already know about graphing parabolas.

$$
\text { Graphing } y=a(x-h)^{2}+k \text { and } y=a x^{2}+b x+c
$$

1. If $a>0$, the graph opens upward. If $a<0$, the graph opens downward.
2. The vertex of $y=a(x-h)^{2}+k$ is (h, k).
3. The x-coordinate of the vertex of $y=a x^{2}+b x+c$ is $x=-\frac{b}{2 a}$.

Measuring the distances to a point on a parabola from the focus ($p, 0$) and directrix ($-\mathrm{p}, \mathrm{y}$) as $\mathrm{d}_{1}=d_{2}$, we can use distance formulas to derive another form for parabolas with a vertex at the origin (see derivation on pgs. 901-902) as $\mathbf{y}^{2}=4 p x$ (opens right/left with focus on x-axis of symmetry) or $\mathbf{x}^{2}=4 p y$ (opens up/down with focus on y-axis)

Example: Find the focus and directrix of the parabola given by the following equations and graph using points above/below or left/right of the focus (notice that these points are $+/-2 p$ from the focus)

$$
y^{2}=8 x \quad x^{2}=-12 y
$$

$4 p=$ \qquad ...

Example: Find the standard form of the equation of a parabola with focus $(\mathbf{8}, \mathbf{0})$ and directrix $\mathbf{x}=\mathbf{- 8}$

Again, not all parabolas are centered at the origin and may be translated (techniques remain the same, but vertices, foci, directrix are now in relation to the new center point) - see figures in book...

Equation	Vertex	Axis of Symmetry	Focus	Directrix	Description
$(y-k)^{2}=4 p(x-h)$	(h, k)	Horizontal	$(h+p, k)$	$x=h-p$	If $p>0$, opens to the right. If $p<0$, opens to the left.
$(x-h)^{2}=4 p(y-k)$	(h, k)	Vertical	$(h, k+p)$	$y=k-p$	If $p>0$, opens upward. If $p<0$, opens downward.

Example: Find the vertex, focus, and directrix of the following (and graph if time)

$$
(x-2)^{2}=4(y+1) \quad y^{2}+2 y+4 x-7=0
$$

There are many applications of parabolas including arches/cables for bridges, solar cookers, reflectors for lights (flashlights), satellite dishes, etc.

Example: Cookie Monster is making an effort to go green, so he has decided to make a solar cooker to help him bake cookies (satellite dish basically) with a diameter of 6 feet and a depth of 1 foot. Where should he put the cooker (focus) to get the maximum reflected sun rays to bake the cookies?

