Sections 9.4 and 9.6 Summary (Rotation of Axes / Conic Sections in Polar Coordinates)

Section 9.4 (Rotation of Axes)

Given a conic equation $\left(\mathrm{Ax}^{2}+\mathrm{Cy}^{2}+\mathrm{Dx}+\mathrm{Ey}+\mathrm{F}=0\right)$ not in standard form such as ., we can determine which conic section we have by examining A, C, and $A C$ (coefficient of x^{2}, y^{2})...
$A=C$, circle
AC $=0$, parabola
AC >0, ellipse
AC < 0, hyperbola

Example: Identify the graph of each of the following

$$
\begin{aligned}
& 3 x^{2}+2 y^{2}+12 x-4 y+2=0 \\
& x^{2}+y^{2}-6 x+y+3=0 \\
& y^{2}-12 x-4 y+52=0 \\
& 9 x^{2}-16 y^{2}-90 x+64 y+17=0
\end{aligned}
$$

The presence of an xy-term in conic equations sometimes rotates the conic over a given angle

Figure 9.46 The graph of $7 x^{2}-6 \sqrt{3} x y+13 y^{2}-16=0$, a rotated ellipse

See page 916 and Example 2 in the book (and Ex. 3 result on pg. 920)

Writing the Equation of a Rotated Conic in Standard Form

1. Use the given equation

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0, B \neq 0
$$

to find $\cot 2 \theta$.

$$
\cot 2 \theta=\frac{A-C}{B}
$$

2. Use the expression for $\cot 2 \theta$ to determine θ, the angle of rotation.
3. Substitute θ in the rotation formulas

$$
x=x^{\prime} \cos \theta-y^{\prime} \sin \theta \text { and } y=x^{\prime} \sin \theta+y^{\prime} \cos \theta
$$

and simplify.
4. Substitute the expressions for x and y from the rotation formulas in the given equation and simplify. The resulting equation should have no $x^{\prime} y^{\prime}$-term.
5. Write the equation involving x^{\prime} and y^{\prime} in standard form.

Section 9.6 (Conic Sections in Polar Coordinates)

Another way to represent conic sections is through polar equations (remember r, θ) using eccentricity

$$
\begin{aligned}
& \text { Parabola } \\
& \begin{array}{c}
\frac{P F}{P D}=e \\
e=1
\end{array}
\end{aligned}
$$

Ellipse
$\begin{array}{rl}\frac{P F}{P D}=e \\ e & e 1\end{array}$
$e<1$

$$
\begin{aligned}
& \text { Hyperbola } \\
& \begin{array}{l}
\frac{P F}{P D}=\frac{P^{\prime} F}{P^{\prime} D^{\prime}}=e \\
e>1
\end{array}
\end{aligned}
$$

Equation Forms :

$$
\begin{aligned}
& \mathrm{r}=\frac{e p}{1+/-e \cos \theta} \\
& \mathrm{r}=\frac{e p}{1+/-e \sin \theta} \\
& \mathrm{e}=\text { eccentricity } \\
& \mathrm{p}=\begin{array}{l}
\text { dist. from focus } \\
\text { to directrix }
\end{array}
\end{aligned}
$$

SEE BOOK EXAMPLES FOR MORE

