Section 9.5 (Parametric Equations)

In a recent game against the Barney's, Ernie threw a baseball from an initial height of 4 feet, with an initial velocity of 90 feet per second and at an angle of 40° with the horizontal. After t seconds the location of the ball can be described by...

$$
\begin{array}{lll}
x=\left(90 \cos 40^{\circ}\right) t & - \text { ball's horizontal distance in feet }- & - \text { AND - } \\
y=4+\left(90 \sin 40^{\circ}\right) t-16 t^{2} & - \text { ball's vertical distance in feet }- &
\end{array}
$$

Using these equations as time (t) changes, we can calculate the location of the ball at any time. This set of equations (x and y as functions of t) are called parametric equations

Time (t)	$\mathrm{x}(\mathrm{t})($ horizontal $)$	$\mathrm{y}(\mathrm{t})($ vertical)
0	$0 \mathrm{ft}$.	4 ft.
1	$90 \cos 40^{\circ} \sim 69 \mathrm{ft}$.	$\sim 46 \mathrm{ft}$.
2	$\sim 138 \mathrm{ft}$.	$\sim 64 \mathrm{ft}$.
3	$\sim 207 \mathrm{ft}$.	$\sim 34 \mathrm{ft}$.
3.6	$\sim 248 \mathrm{ft}$.	$\sim 0 \mathrm{ft}$.

A plane curve is the set of ordered pairs (x, y) where $x=f(t)$ and $y=g(t)$ for t in an interval I and the equations $x=$ $f(t)$ and $y=g(t)$ are called parametric equations for the curve
Example: Graph the plane curve defined by the parametric equations $\mathbf{x}=\mathbf{t}^{\mathbf{2}} \mathbf{+ 1 , y = \mathbf { 3 t } , \mathbf { - 2 \leq t \leq 2 } , ~}$

We examined a variety of points in the first example to graph a plane curve. Another method is to eliminate the parameter (t) to write one equation in x and y equivalent to the two equations (see discussion on pg. 927).

1. Solve for t in one of the parametric equations
2. Substitute the expression for t in the other equation
(you may need to change the domain of the rectangular equation to be consistent with the domain for the parametric equation)
Example: Sketch the plane curve represented by the following parametric equations by eliminating the parameter
(use identity $\sin ^{2} t+\cos ^{2} t=1$)

It is sometimes helpful in applications to find a set of parametric equations for a given function (there are often multiple possible sets of parametric equations for a given function, but remember that the parametric equations must allow x to take on all the values in the domain of the original equation. One method if $y=f(x)$ is to let $x=t$ and go from there...
Example: Find a set of parametric equations for the parabola whose equation is $\mathbf{y}=\mathbf{x}^{\mathbf{2}} \mathbf{- 2 5}$

See cycloid application in the book for details on a different application problem, but let's explore our first example a bit more.

The path of a projectile launched h feet above the ground with an initial velocity of $\mathrm{v}_{0} \mathrm{ft}$. per second and at an angle θ with the horizontal is given by

$$
\begin{aligned}
& x=\left(v_{0} \cos \theta\right) t \\
& y=h+\left(v_{0} \sin \theta\right) t-16 t^{2}
\end{aligned} \quad-\text { object's horizontal distance in feet - } \quad-\text { AND - }
$$

Example: A trigonometry book is launched by an angry student with an initial velocity of 200 ft . per second at an angle of 42° with the horizontal. The book was launched from a height of 4 feet.
a) Find the parametric equations that describe the position of the book as a function of time.
b) Describe the book's position after $\mathrm{t}=1$ second and after $\mathrm{t}=3$ seconds
c) How long (to the nearest tenth of a sec.) is the book in flight, and how far does the book fly (horizontally)?

