Section 1.2 (Finding Limits Graphically and Numerically)

Review section 1.1 for an introduction to calculus (mathematics of change) and list 2 classic problems in calculus

1. The \qquad problem
2. The \qquad problem
Sketch the graph of $f(x)=\frac{x^{2}-\mathbf{1}}{x-1}, x \neq 1$ on the given axes and observe the behavior of the graph

x	$f(x)=\frac{x^{2}-1}{x-1}$
-1	
0	
0.5	
0.9	
1.01	
2	

Though our function is not defined at $x=1$, we can observe that as our x-values approach 1 from the left ($0.5,0.9,0.999, \ldots$) and from the right ($1.5,1.1,1.0001, \ldots$), our function $f(x)$ approaches \qquad .

The limit of $f(x)$ as x approaches c is given by the equation $\mathbf{L}=\lim _{x \rightarrow c} \boldsymbol{f}(\boldsymbol{x})$, or in the given example \ldots

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=
$$

Examples: Find the limits of the functions given below...

$$
\lim _{x \rightarrow 1} \frac{x^{2}+3}{x+1}
$$

$$
\lim _{x \rightarrow 2}|x-3|
$$

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}
$$

Some limits fail to exist. Consider the results when examining...
$\lim _{x \rightarrow 1} \frac{|x-1|}{x-1}$
$\lim _{x \rightarrow 0} \frac{2}{x^{4}}$
$\lim _{x \rightarrow 0} \cos \left(\frac{1}{x}\right) \ldots$

Definition of limit

Let f be a function defined on an open interval containing c and let L be a real number. The statement

$$
\begin{aligned}
& \lim _{x \rightarrow 0}\left(4-\frac{x}{2}\right)= \\
& \quad \text { whenever } 0<|x-\quad|<\delta
\end{aligned}
$$

Example: Find the limit L . Then use the $\varepsilon-\delta$ definition to prove that the limit is L

$$
\lim _{x \rightarrow-3}(2 x+5)
$$

Application Example: Bert and Ernie created a sporting goods manufacturer for Sesame Street and designed a golf ball having a volume of 2.48 cubic inches.
(a) What is the radius of the golf ball?
(b) If the ball's volume can vary between 2.45 and 2.51 cubic inches, how can the radius vary?
(c) Consider the $\varepsilon-\delta$ definition of limit to describe this situation (what are ε and δ)...

