Section 1.3 (Evaluating Limits Analytically)

In section 1.2, we introduced the concept of limits and learned that the limit of a function $f(x)$ as x approaches c (a constant) isn't necessarily the function value at $x=c$, but oftentimes this is the case. If a function $f(x)$ is continuous at \mathbf{c}, then $\lim _{\boldsymbol{x} \rightarrow \boldsymbol{c}} \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{c})$. Here are some basic limits where b and c are real numbers and n is a positive integer...

$$
\begin{gathered}
\lim _{x \rightarrow c} b=\boldsymbol{b} \quad \lim _{x \rightarrow c} x=c \quad \lim _{x \rightarrow c} x^{n}=c^{n} \\
\\
\text { (What do each of these look like graphically?) }
\end{gathered}
$$

Furthermore, with $\lim _{x \rightarrow c} \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{L}$ and $\lim _{x \rightarrow c} \boldsymbol{g}(\boldsymbol{x})=\boldsymbol{K} \ldots$

1.	Scalar multiple:	$\lim _{x \rightarrow c}[\boldsymbol{b} f(\boldsymbol{x})]=\boldsymbol{b} \boldsymbol{L}$	
2.	Sum or difference:	$\lim _{x \rightarrow c}[\boldsymbol{f}(\boldsymbol{x}) \pm \boldsymbol{g}(\boldsymbol{x})]=\boldsymbol{L} \pm \boldsymbol{K}$	
3.	Product:	$\lim _{x \rightarrow c}[\boldsymbol{f}(\boldsymbol{x}) \boldsymbol{g}(\boldsymbol{x})]=\boldsymbol{L} \boldsymbol{K}$	
4.	Quotient:	$\lim _{x \rightarrow c}[\boldsymbol{f}(\boldsymbol{x}) / \boldsymbol{g}(\boldsymbol{x})]=\boldsymbol{L} / \boldsymbol{K} \quad$ (provided K $\neq 0$)	
5.	Power:	$\lim _{x \rightarrow c}[\boldsymbol{f}(\boldsymbol{x})]^{n}=\boldsymbol{L}^{n}$	

Examples: Evaluate the following limits...

$$
\lim _{x \rightarrow 3}[-4] \quad \lim _{x \rightarrow 2}[x] \quad \lim _{x \rightarrow-3}[x]^{3} \quad \lim _{x \rightarrow-2}\left[4 x^{3}-3 x\right]
$$

From the last example above, notice that the limit is the same as the function evaluated at $x=-2$. This simple substitution property is valid for all polynomials and rational functions with nonzero denominators. Consider polynomial functions $\mathrm{p}(\mathrm{x})$ and $\mathrm{q}(\mathrm{x})$ and rational function $\mathrm{r}(\mathrm{x}) \ldots$

$$
\lim _{x \rightarrow c} \boldsymbol{p}(\boldsymbol{x})=\boldsymbol{p}(\boldsymbol{c}) \quad \lim _{x \rightarrow \boldsymbol{c}} \boldsymbol{r}(\boldsymbol{x})=\boldsymbol{r}(\boldsymbol{c})=\boldsymbol{p}(\boldsymbol{c}) / \boldsymbol{q}(\boldsymbol{c}) \quad(\text { where } \mathrm{q}(\mathrm{c}) \neq 0)
$$

Examples: Evaluate the following limits...

$$
\lim _{x \rightarrow 3}\left[3 x^{2}-4\right]
$$

$$
\lim _{x \rightarrow 2} \frac{x^{2}-3 x+3}{x}
$$

Similar rules apply for roots and composite functions ...

$$
\lim _{x \rightarrow c} \sqrt[n]{x}=\sqrt[n]{c} \quad(\text { valid for } \mathrm{c}>0 \text { if } \mathrm{n} \text { even }) \quad \lim _{x \rightarrow c} f(g(x))=f\left(\lim _{x \rightarrow c} g(x)\right)=f(K)
$$

Example: Evaluate the following limit...
$\lim _{x \rightarrow 0} \sqrt{x^{2}+9} \Rightarrow \mathrm{~g}(\mathrm{x})=\mathrm{x}^{2}+9, \mathrm{f}(\mathrm{x})=\sqrt{x} \Rightarrow \lim _{x \rightarrow 0} \sqrt{g(x)} \Rightarrow \lim _{x \rightarrow 0} f(g(x)) \Rightarrow f\left(\lim _{x \rightarrow 0} x^{2}+9\right)$

Using direct substitution, we also have the trigonometric functions (assume c is in the domain of the function)...

$$
\lim _{x \rightarrow c} \sin (x)=\sin (c) \quad \quad \lim _{x \rightarrow c} \cos (x)=\cos (c) \quad \lim _{x \rightarrow c} \tan (x)=\tan (c) \ldots
$$

Examples: Evaluate the following limits...

$$
\lim _{x \rightarrow 0} \sin (x) \quad \lim _{x \rightarrow \pi} x \cos (x) \quad \lim _{x \rightarrow 0} \cos ^{2}(x)
$$

Review factoring of $\mathbf{f}(\mathbf{x})=\mathbf{x}^{\mathbf{3}} \mathbf{- 1}$ and $\mathbf{g}(\mathbf{x})=\mathbf{x}^{\mathbf{3}}+\mathbf{1}$ and discuss example 6 in the book...

$$
f(x)=x^{3}-1=(x-1)\left(x^{2}+x+1\right) \quad g(x)=x^{3}+1=
$$

Theorem 1.7: If a function $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$ for all $\mathrm{x} \neq \mathrm{c}$ and the limit of $\mathrm{g}(\mathrm{x})$ as $\mathrm{x}-\mathrm{c} \mathrm{c}$ exists, then $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} \boldsymbol{g}(x)$

Examples: Divide out factors and / or rationalize to find the following limits...

$$
\lim _{x \rightarrow-2} f(x)=\frac{x^{2}-3 x-10}{x+2} \quad \lim _{x \rightarrow 0} g(x)=\frac{\sqrt{x+1}-1}{x}
$$

Review the squeeze theorem (sandwich, pinching) and examples in the book ...

Special Trig. Limits:

The limit $\lim _{x \rightarrow 0} x^{2} \boldsymbol{\operatorname { s i n }}\left(\frac{\mathbf{1}}{\boldsymbol{x}}\right)$ cannot be determined through substitution / limit law because $\lim _{x \rightarrow 0} \boldsymbol{\operatorname { s i n }}\left(\frac{1}{x}\right)$ doesn't exist. However, we know that $-\mathbf{1} \leq \boldsymbol{\operatorname { s i n }}\left(\frac{1}{\boldsymbol{x}}\right) \leq \mathbf{1}$ and then $-x^{2} \leq x^{2} \boldsymbol{\operatorname { s i n }}\left(\frac{\mathbf{1}}{\boldsymbol{x}}\right) \leq x^{2}$. Since $\mathbf{0}=\lim _{x \rightarrow 0} x^{2}=\lim _{x \rightarrow 0}\left(-x^{2}\right)$, the squeeze theorem gives $\lim _{x \rightarrow 0} x^{2}=\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=\lim _{x \rightarrow 0}\left(-x^{2}\right)$, and
$0=\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0$

$$
\lim _{x \rightarrow 0}\left(\frac{\sin (x)}{x}\right)=1 \quad \lim _{x \rightarrow 0} \frac{1-\cos (x)}{x}=0
$$

