Section 1.3 (Evaluating Limits Analytically)

In section 1.2, we introduced the concept of limits and learned that the limit of a function f(x) as x approaches c (a constant) isn't necessarily the function value at x = c, but oftentimes this is the case. If a function f(x) is **continuous at c**, then $\lim_{x\to c} f(x) = f(c)$. Here are some basic limits where b and c are real numbers and n is a positive integer...

$$\lim_{x \to c} b = b \qquad \lim_{x \to c} x = c \qquad \lim_{x \to c} x^n = c^n$$
(What do each of these look like graphically?)

Furthermore, with $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = K$...

1. 2. 3. 4.	Scalar multiple: Sum or difference: Product: Quotient: Dowor:	$\lim_{x \to c} [bf(x)] = bL$ $\lim_{x \to c} [f(x) \pm g(x)] = L \pm K$ $\lim_{x \to c} [f(x)g(x)] = LK$ $\lim_{x \to c} [f(x)/g(x)] = L/K \text{(provided K \neq 0)}$ $\lim_{x \to c} [f(x)]^n = L^n$
5.	Power:	$\lim_{x\to c} [f(x)]^n = L^n$

Examples: Evaluate the following limits...

$$\lim_{x \to 3} [-4] \qquad \qquad \lim_{x \to -2} [x] \qquad \qquad \lim_{x \to -3} [x]^3 \qquad \qquad \lim_{x \to -2} [4x^3 - 3x]$$

From the last example above, notice that the limit is the same as the function evaluated at x = -2. This simple substitution property is valid for all polynomials and rational functions with nonzero denominators. Consider polynomial functions p(x) and q(x) and rational function r(x)...

$$\lim_{x \to c} p(x) = p(c) \qquad \qquad \lim_{x \to c} r(x) = r(c) = p(c)/q(c) \qquad \text{(where q(c) \neq 0)}$$

Examples: Evaluate the following limits...

 $\lim_{x\to 3} [3x^2 - 4]$

$$\lim_{x\to 2} \frac{x^2 - 3x + 3}{x}$$

Similar rules apply for roots and composite functions ...

 $\lim_{x \to c} \sqrt[n]{x} = \sqrt[n]{c} \qquad \text{(valid for c>0 if n even)} \qquad \lim_{x \to c} f(g(x)) = f(\lim_{x \to c} g(x)) = f(K)$

Example: Evaluate the following limit...

$$\lim_{x \to 0} \sqrt{x^2 + 9} \implies g(x) = x^2 + 9, f(x) = \sqrt{x} \implies \lim_{x \to 0} \sqrt{g(x)} \implies \lim_{x \to 0} f(g(x)) \implies f(\lim_{x \to 0} x^2 + 9)$$

Using direct substitution, we also have the trigonometric functions (assume c is in the domain of the function)...

 $\lim_{x \to c} sin(x) = sin(c) \qquad \qquad \lim_{x \to c} cos(x) = cos(c) \qquad \qquad \lim_{x \to c} tan(x) = tan(c) \dots$

Examples: Evaluate the following limits...

 $\lim_{x\to 0} sin(x) \qquad \qquad \lim_{x\to \pi} x \cos(x) \qquad \qquad \lim_{x\to 0} \cos^2(x)$

Review factoring of $f(x) = x^3 - 1$ and $g(x) = x^3 + 1$ and discuss example 6 in the book...

 $f(x) = x^{3} - 1 = (x - 1)(x^{2} + x + 1) \qquad g(x) = x^{3} + 1 =$

Theorem 1.7: If a function f(x) = g(x) for all $x \neq c$ and the limit of g(x) as $x \rightarrow c$ exists, then $\lim_{x \to c} f(x) = \lim_{x \to c} g(x)$

Examples: Divide out factors and / or rationalize to find the following limits...

Review the squeeze theorem (sandwich, pinching) and examples in the book ...

The limit $\lim_{x\to 0} x^2 sin\left(\frac{1}{x}\right)$ cannot be determined through substitution / limit law because $\lim_{x\to 0} sin\left(\frac{1}{x}\right)$ doesn't exist. However, we know that $-1 \le sin\left(\frac{1}{x}\right) \le 1$ and then $-x^2 \le x^2 sin\left(\frac{1}{x}\right) \le x^2$. Since $0 = \lim_{x\to 0} x^2 = \lim_{x\to 0} (-x^2)$, the squeeze theorem gives $\lim_{x\to 0} x^2 = \lim_{x\to 0} x^2 sin\left(\frac{1}{x}\right) = \lim_{x\to 0} (-x^2)$, and $0 = \lim_{x\to 0} x^2 sin\left(\frac{1}{x}\right) = 0$ $\lim_{x\to 0} \left(\frac{sin(x)}{x}\right) = 1$ $\lim_{x\to 0} \frac{1-cos(x)}{x} = 0$

Special Trig. Limits:

Homework problems: 5,8,13,18,27,32,37,43,45,51,55,65 (required) 48,61,85,103,104 (recommended)