Section 2.3 (Product and Quotient Rules and Higher Order Derivatives)

We covered the sum and difference rules for derivatives in the previous section. The product and quotient rules are a little more involved (see book for proofs)...

1. Product Rule: $\frac{\boldsymbol{d}}{\boldsymbol{d} \boldsymbol{x}}[\mathbf{f}(\mathbf{x}) \mathbf{g}(\mathbf{x})]=\mathbf{f}(\mathbf{x}) \mathbf{g}^{\prime}(\mathbf{x})+\mathbf{g}(\mathbf{x}) \mathbf{f}^{`}(\mathbf{x}) \quad$ (note: not the same as a composition function)

$$
\text { --- } 1^{\text {st }} \text { times the derivative of the } 2^{\text {nd }}+2^{\text {nd }} \text { times the derivative of the } 1^{\text {st }}-- \text { - }
$$

2. Quotient Rule: $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$
--- low-d-hi minus hi-d-low over low squared ---
Examples: Find the following derivatives
$h(x)=\left(5 x^{2}-2 x\right)(3 x+4)$
$y=4 x^{3} \sin (x)$
$y=3 x \sin (x)-4 \cos (x)$
$f(x)=x^{3} \sin (x) \cos (x)$
$h(x)=\frac{5 x+2}{x^{2}-7}$
$y=\frac{6-(1 / x)}{x+9}$
$\mathrm{h}(\mathrm{x})=\frac{x^{3}-4 x}{5}$

Knowing the derivatives of sin and cos allows us to find the derivatives of the remaining trigonometric functions.
Example: Use the quotient rule to find the derivative of $\tan (x)$

Derivatives of trigonometric functions:

$$
\begin{array}{lll}
\frac{d}{d x} \sin (\mathrm{x})=\cos (\mathrm{x}) & \frac{d}{d x} \cos (\mathrm{x})=-\sin (\mathrm{x}) & \frac{d}{d x} \tan (\mathrm{x})= \\
\frac{d}{d x} \csc (\mathrm{x})=-\csc (\mathrm{x}) \cot (\mathrm{x}) & \frac{d}{d x} \sec (\mathrm{x})=\sec (\mathrm{x}) \tan (\mathrm{x}) & \frac{d}{d x} \cot (\mathrm{x})=-\csc ^{2}(\mathrm{x})
\end{array}
$$

Examples: Find the derivatives of the following...
$y=3 x^{5}-\cot (x)$
$y=x^{2} \csc (x)$
$y=\frac{1-\cos (x)}{\sin (x)}=\csc (x)-\cot (x)$
--- Note that much of the work in finding derivatives is in simplifying after differentiation ---

Similarly to finding velocity with the derivative of the position function (velocity = change in position over time), we can obtain acceleration using the derivative of the velocity function (acceleration = change in velocity over time).

$$
\text { Position: } s(t) \quad \text { Velocity: } v(t)=s^{\prime}(t) \quad \text { Acceleration: } a(t)=v^{\prime}(t)=s^{\prime \prime}(t)
$$

The function $a(t)$ is the second derivative of $s(t)$--- This is the derivative of the first derivative (other higher-order derivatives follow)

Application Example: (Review example 10 in the book) Paul Blart is travelling at a rate of 22.5 mph (33 feet per second) on his Segway when the brakes are applied. The position function of the Segway is $s(t)=-4.3 t^{2}+22.5 t$, where s is measured in feet and t in seconds. Use this function to complete the table...

t	0	1	2	3	4
$s(t)$					
$v(t)$					
$a(t)$					

