Section 2.4 (The Chain Rule)

Composite functions can be more complex and we have not yet talked about their derivatives.
Example: Find the derivative of $h(x)=\left(2 x^{3}-4\right)^{2}$ using formulas covered to this point.

Example: Decompose the previous into 2 functions $f(x)$ and $g(x)$ such that $h(x)=f(g(x))$

Chain Rule: If $y=f(u)$ is a differentiable function of u and $u=f(x)$ is a differentiable function of x, then $y=f(g(x))$ is a differentiable function of x and $\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{`}(x)$ or $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$
--- For composite functions, take the derivative of the outer function and multiply by the derivative of the inner function --Example: Find the derivative of $h(x)=\left(2 x^{3}-4\right)^{2}$ using the chain rule

Examples: Decompose the following composite functions $y=f(g(x))$ into smaller functions $u=g(x)$ and $y=f(u)$

$$
y=(3 x+8)^{4} \quad y=\frac{3}{2 x+5} \quad y=\cos (3 x) \quad y=\sqrt{3 x^{3}-x+5} \quad y=\sin ^{3}(x)
$$

As a result of the chain rule we can generalize the power rule to be $\frac{d}{d x}\left[u^{n}\right]=n u^{n-1} u^{\text {}}$ Example: Find the derivative of $f(x)=(3 x+8)^{4}$

Example: Find the derivative of $f(x)=\sqrt[3]{\left(x^{2}-1\right)}$

Where does $f^{\prime}(x)=0$ and where does it not exist?
Review examples 7,8,9 in the book and work some of the homework exercises 7-36

The chain rule also applies to derivatives of trigonometric functions...

$$
\frac{d}{d x}[\sin \mathrm{u}]=(\cos \mathrm{u}) \mathrm{u}^{\prime} \quad \frac{d}{d x}[\cos \mathrm{u}]=-(\sin \mathrm{u}) \mathrm{u}^{\prime}
$$

Examples: Find the derivatives of the following functions...

$$
y=\sin (4 x) \quad y=\sin ^{2}(x) \quad y=\sqrt{\sin (x)} \quad y=\sin ^{2}(8 \theta)
$$

--- Note that if a derivative involves the composition of more than 2 functions you may need to apply the chain rule more than once

