Section 2.5 (Implicit Differentiation)

Up to this point we've looked at equations in which y is expressed explicitly as a function of x (y $=f(x)=x^{2}+3$ for example). What happens when we are unable to write y explicitly as a function of $x\left(x^{2}-2 y^{3}+4 y=2\right)$?
Example: Use implicit differentiation to differentiate xy^{2} with respect to x ...

$$
\begin{aligned}
\frac{d}{d x} & {\left[\mathrm{xy}{ }^{2}\right]=\mathrm{x} \frac{d}{d x}\left[\mathrm{y}^{2}\right]+\mathrm{y}^{2} \frac{d}{d x}[\mathrm{x}] } & & -- \text { Product rule } \\
& =\mathrm{x}\left[2 \mathrm{y} \frac{d y}{d x}\right]+\mathrm{y}^{2}(1) & & \text {-- Chain rule } \\
& =2 \mathrm{xy} \frac{d y}{d x}+\mathrm{y}^{2} & & \text {-- Simplify }
\end{aligned}
$$

Guidelines for implicit differentiation...

1. Differentiate both sides of the equation with respect to x.
2. Collect all terms involving $\mathrm{dy} / \mathrm{dx}$ on the left side and move other terms to right side
3. Factor $\mathrm{dy} / \mathrm{dx}$ out of the left side of the equation
4. Solve for $d y / d x$

Example: Find dy/dx given $y^{3}+y^{2}-3 y-x^{2}=5$

Example: Determine the slope of the graph of $\left(x^{2}+4\right) y=8$ at point $(-2,1)$

Example: Determine the slope of the graph of $3\left(x^{2}+y^{2}\right)=100 x y$ at the point $(3,1)$

Example: For equation $x^{2}+y^{2}-4 x+6 y+9=0$, find the following...

1. Find function(s) by solving the equation for y in terms of x
2. Sketch the graph(s)
3. Differentiate the explicit function(s)
4. Use implicit differentiation on the original function and show the results are equivalent

Sometimes you can use the original equation or derivative to find and simplify higher-order derivatives Example: Find $\frac{d^{2} y}{d^{2} x}$ of $x^{2} y^{2}-2 x=3$ in terms of x and y

