Section 3.3 (Increasing and Decreasing Functions and the First Derivative Test)
Recall that a function is increasing if as x increases (left-to-right) if $f(x)$ or y is increasing (down-to-up). Sketch 2 increasing functions on the left axes and 2 decreasing functions on the right axes (sketch a constant function on the board).

If you examine the derivatives of these functions, you will see that...

- if $f^{`}(x)>0$ for all x in (a, b) then f is increasing on $[a, b]$
- if $f^{\prime}(x)<0$ for all x in (a, b) then f is decreasing on $[a, b]$
- if $f^{`}(x)=0$ for all x in (a, b) then f is constant on [a,b]

Example: Find the open intervals on which $f(x)=x^{2}-4 x+3$ is increasing or decreasing (note: find critical points where $f^{`}(x)=0$ or does not exist - why?)

Example: Answer the following (sketch as needed)

What happens if the sign of $f^{`}(x)$ does not change on from the left to the right of a critical point?
What happens if the sign of $f^{`}(x)$ chanes from positive to negative from the left to the right of a critical point?
What happens if the sign of $f^{\prime}(x)$ chanes from negative to positive from the left to the right of a critical point?

Guidelines for finding increasing decreasing intervals (and relative maxima, minima):

1. Locate critical numbers of f in (a, b)
2. Determine the sign of $f^{\prime}(x)$ at one test value in each interval
3. Use that information to determine whether a function is increasing / decreasing / constant (and extrema)

Example: Find the relative extrema of $f(x)=x^{3}-3 x^{2}+1 \quad$ (define concave up and down / inflection points)
Example: Review example 5 in the book and find the relative extrema of $\mathrm{f}(\mathrm{x})=\sqrt{4 x-x^{2}}$ (consider the domain of f)

