Section 4.1 (Antiderivatives and Indefinite Integration)

One goal in antiderivatives is to find a function $F(x)$ that has a given derivative. Consider the function whose derivative is $4 x^{3}$. The function with this derivative is ...

$$
F(x)=\ldots \text { because } \frac{d}{d x}[\quad]=4 x^{3}
$$

A function F is an antiderivative of f on an interval I when $F^{\prime}(x)=f(x)$ for all x in I
Example: Find the general solution to the differential equation (definition before example 1 in book) y $=3$.
(Hint: Find a function whose derivative is 3 . The operation of finding all solutions of this equation is called antidifferentiation)

Integration is the inverse of differentiation (and vice versa): $\quad \int F^{`}(x) d x=F(x)+C$ and $\frac{d}{d x}\left[\int f(x) d x\right]=f(x)$
Examples: Review basic integration rules in the book (p. 246) and find the following antiderivatives
(Hint: rewrite -> integrate -> simplify)
$\int 5 x d x \quad \int \frac{\mathbf{1}}{\boldsymbol{x}^{2}} d x \quad \int(2 x+3) d x \quad \int \sqrt{x} d x \quad \int 5 \cos (x) d x \quad \int\left(5 x^{3}+2 x^{2}-7\right) d x$

$$
\int \frac{1-\boldsymbol{x}}{\sqrt{\boldsymbol{x}}} d x \quad \int \frac{\cos \boldsymbol{x}}{\sin ^{2} \boldsymbol{x}} d x \quad \text { Other homework examples as time allows }
$$

We've seen how to find the general solutions for antiderivatives, but if given an initial condition, we can find a particular solution.
Example: Find the general solution to $F^{\prime}(x)=\frac{1}{x^{2}}, x>0$ and then find the particular solution that satisfies $f(1)=2$.

Example: Virginia Tech pitcher Aaron McGarity is near the top of beautiful Lane Stadium at an initial height of 96 feet when he throws a ball upward with an initial velocity of $\sim 55 \mathrm{mph}$ (80 feet per second). (a) Find the position function giving the height s as a function of time t. (b) When does the ball hit the ground?

