Section 4.6 (Numerical Integration)

Some elementary functions do not have basic antiderivatives (consider $\sin \left(\mathrm{x}^{2}\right)$ or $\sqrt{x} \cos (\mathrm{x})$), so we use numerical approximation techniques. One such techniques is the trapezoidal rule.

The trapezoidal rule for approximating $\int_{a}^{b} f(x) d x \approx \frac{b-a}{2 n}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$
Observe coefficients $1,2,2, \ldots 2,1$
Example: Use the trapezoidal rule to approximate $\int_{0}^{\pi} \sin (x) d x$ with $\mathrm{n}=5$ and $\mathrm{n}=10$ trapezoids.

In addition to using rectangles and trapezoids, we can also use a quadratic (polynomial) approximation (curve). The details behind this approach involve finding a general formula for integrating a quadratic...

$$
\left.\int_{a}^{b}\left(A x^{2}+B x+C\right) d x=\frac{A x^{3}}{3}+\frac{B x^{2}}{2}+C x\right]_{a}^{b}=\quad \cdots \quad=\left(\frac{b-a}{6}\right)\left[p(a)+4 p\left(\frac{a+b}{2}\right)+p(b)\right]
$$

See book for more details (this formula is used in the proving of Simpson's Rule)
Note that the quadratic subintervals need 3 points in x to estimate with Simpson's rule
Simpson's rule for approximating $\int_{a}^{b} f(x) d x \approx \frac{b-a}{3 n}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$
Observe coefficients $1,4,2,4, \ldots 2,4,1$
Example: Use Simpson's Rule to approximate $\int_{-\pi / 2}^{\pi / 2} \cos (x) d x$ for $\mathrm{n}=4$ and $\mathrm{n}=8$

Review error estimation and complete homework exercises as time permits

