Section 5.1 - 5.2 (The Natural Logarithmic Function: Differentiation / Integrations)
In algebra, we define the natural logarithm (In) as being the inverse of the exponential function (e^{x}). Recall that the value of $\mathrm{y}=\mathrm{e}^{\mathrm{x}}$ is always \qquad A similar definition is given in section 5.1 with

$$
\operatorname{In} \mathrm{x}=\int_{1}^{x} \frac{1}{t} \mathrm{dt} \quad(\ln \mathrm{x} \text { Domain? Range? Concavity?) } \quad \ln \mathrm{x}=\log
$$

Examples: Recall the properties of logarithmic expressions by expanding the following...
$\ln \frac{15 x}{11}$
$\ln (3 x+5)^{2}$
$\ln \sqrt{x^{2}+3 x}$

Given the definition above for $\ln \mathrm{x}$, it follows that $\frac{d}{d x}[\ln \mathrm{u}]=\frac{1}{u} \frac{d u}{d x}=\frac{u \prime}{u}, \mathrm{u}>0$
Examples: Differentiate the following...

$$
\frac{d}{d x} \ln (3 \mathrm{x}) \quad \frac{d}{d x} \ln (3 \mathrm{x}-1)^{2} \quad \frac{d}{d x} \ln \left(\frac{x\left(x^{2}+3\right)^{2}}{\sqrt{x+2}}\right)
$$

Keep in mind that the natural logarithm is only defined for positive numbers, so often you will see $\frac{d}{d x} \ln |\mathrm{u}|=\frac{u \prime}{u}$ Example: Differentiate $\mathrm{y}=\ln |\sin \mathrm{x}|$ with time...

Given the derivative of logarithmic functions, it follows that $\int \frac{1}{x} d x=\ln |\mathrm{x}|+\mathrm{C}$ and $\int \frac{1}{u} d u=\ln |\mathrm{u}|+\mathrm{C}$ Examples: Integrate

$$
\int \frac{-4}{x} d x \quad \int \frac{4}{2 x+1} d x \quad \int \frac{2 x^{3}+1}{x^{4}+2 x} d x
$$

Review examples 5-7 in the book and the guidelines for integration prior to working some of the homework exercises
--- Note: Integrals of the 6 basic trig functions (and some examples) are listed on pp. 332-3 ---

