Section 5.3 / 5.4 (Inverse Functions / Exponential Functions)

Much of section 5.3 involves a review of inverse functions, their meaning and derivation; so we'll do an example to review the steps in finding inverse functions and apply Theorem 5.5 concerning the derivative of an inverse function

Example: Find the inverse function $\left(f^{-1}(x)\right)$ of $f(x)=8 x^{3}-17$
(how are the graphs related?)

If f has an inverse function $f^{-1}(x)=g(x)$, then $g^{\prime}(x)=\frac{1}{f r(g(x))}, f^{`}(g(x)) \neq 0$

Example: Find $f^{`}(x), f(-1), f^{-1}(-1), f^{`}\left(f^{-1}(-1)\right)$, and $\left(f^{-1}\right)^{`}(x)$ when $x=-1$

Recall that the natural log function $(\ln x)$ and exponential function $\left(e^{x}\right)$ are inverses and $\ln \left(e^{x}\right)=x=e^{\ln (x)}$
Example: Use the method of switching between logarithmic and exponential form to solve the following equations

$$
\ln (3 x-1)=17
$$

$$
30=e^{x+2}
$$

One of the more interesting and used derivatives in Calculus involves the natural exponential function $\frac{d}{d x} e^{x}=e^{x}$ Examples: Find the derivative (wrt. x) of $y=e^{3 x+3}$ and $y=e^{-2 / x}$

Example: Find the relative extrema of $f(x)=3 x \mathrm{e}^{\mathrm{x}}$ (review example 5 with time)

With the derivative of $\mathrm{e}^{u}=\mathrm{e}^{\mathrm{u}} \frac{d u}{d x}$, it follows that the antiderivative is $\int e^{u} d u=e^{u}+C$ Examples: Find the following integrals...
$\int e^{2 x+1} d x$
$\int 4 x e^{-x^{2}} d x$
$\int \cos (x) e^{\sin (x)} d x$
$\int_{-2}^{1} e^{x} \sin \left(e^{x}\right) d x$

