Section 5.5-5.7 (Bases other than e and Applications / Inverse Trig. Functions / etc.)

Examining logarithmic / exponential expressions in other bases is pretty straightforward by applying a conversion factor...

$$
a^{x}=e^{x \ln (a)} \quad-- \text { and }---\quad \log _{a}(x)=\frac{\ln (x)}{\ln (a)}
$$

Examples: Evaluate $\log _{3}(27), \log _{3}(50)$

Derivatives for bases other than e are listed in theorem 5.13, but you can also convert to e before differentiating Example: Evaluate the derivative of $3^{2 x}$

The rest of section 5.5 is a review of exponential expressions with some useful examples. Review with time.
Section 5.6 reviews inverse trigonometric functions ($\sin ^{-1}(x)$ lies between what possible angles?) and the derivatives of the inverse functions are listed below

$$
\begin{array}{lll}
\frac{d}{d x}[\operatorname{asin}(\mathrm{u})]=\frac{u^{\prime}}{\sqrt{1-u^{2}}} & \frac{d}{d x}[\operatorname{atan}(\mathrm{u})]=\frac{u^{\prime}}{1+u^{2}} & \frac{d}{d x}[\operatorname{asec}(\mathrm{u})]=\frac{u \prime}{|u| \sqrt{u^{2}-1}} \\
\frac{d}{d x}[\operatorname{acos}(\mathrm{u})]=\frac{-u \prime}{\sqrt{1-u^{2}}} & \frac{d}{d x}[\operatorname{acot}(\mathrm{u})]=\frac{-u^{\prime}}{1+u^{2}} & \frac{d}{d x}[\operatorname{acsc}(\mathrm{u})]=\frac{-u \prime}{|u| \sqrt{u^{2}-1}}
\end{array}
$$

Examples: Evaluate $\frac{d}{d x}[\operatorname{asin}(3 \mathrm{x})]$ and $\frac{d}{d x}\left[\operatorname{acot}\left(\mathrm{x}^{2}\right)\right]$

Following these examples, it can be seen that the integrals involving inverse trigonometric functions are

$$
\int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\operatorname{asin}\left(\frac{u}{a}\right)+\mathrm{C} \quad \int \frac{d u}{a^{2}+u^{2}}=\left(\frac{1}{a}\right) \operatorname{atan}\left(\frac{u}{a}\right)+\mathrm{C} \quad \int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=\left(\frac{1}{a}\right) \operatorname{asec}\left(\frac{u}{a}\right)+\mathrm{C}
$$

--- See examples from the book for a better idea how expressions can be simplified prior to integration ---
Examples: Evaluate the indefinite integrals

$$
\int \frac{d u}{\sqrt{9-x^{2}}} \quad \int \frac{12}{1+9 x^{2}} d x \quad \int \frac{1}{x \sqrt{4 x^{2}-1}} d x
$$

Section 5.8 discusses a special class of exponential functions called hyperbolic functions (think power lines between two poles). The derivatives and integrals follow the trend of common trig. functions ($\sinh x=>\cosh x$)

Section 6.2 is a good application section to review (especially if taking differential equations in the future) for an introduction of exponential growth and decay (population growth, sales, radioactive decay)

